Practical Geriatrics ›› 2025, Vol. 39 ›› Issue (8): 762-767.doi: 10.3969/j.issn.1003-9198.2025.08.002
Previous Articles Next Articles
JIANG Huizeng, LIU Jinna, ZHANG Dandan, ZHANG Jie
Received:
2025-06-15
Online:
2025-08-20
Published:
2025-08-19
Contact:
ZHANG Jie, Email:zhj_0724@163.com
CLC Number:
JIANG Huizeng, LIU Jinna, ZHANG Dandan, ZHANG Jie. Advances of the application of artificial intelligence in fall risk management in the elderly[J]. Practical Geriatrics, 2025, 39(8): 762-767.
[1] MONTERO-ODASSO M, VAN DER VELDE N, MARTINF C, et al. World guidelines for falls prevention and management for older adults: a global initiative[J]. Age Ageing, 2022, 51(9): afac205. [2] World Health Organization. Step safely: strategies for preventing and managing falls across the life-course[EB/OL].(2021-04-27)[2025-06-30].https://www.who.int/publications/i/item/978924002191-4. [3] GONZÁLEZ-CASTRO A, LEIRÓS-RODRÍGUEZ R, PRADA-GARCÍA C, et al. The applications of artificial intelligence for assessing fall risk: systematic review[J]. J Med Internet Res, 2024, 26: e54934. [4] 叶子晨,薛鹏,乔友林,等.人工智能在医疗卫生领域中面临的挑战及应对措施[J].中华流行病学杂志,2024,45(7):1030-1038. [5] 科技部,教育部,工业和信息化部,交通运输部,农业农村部,国家卫生健康委.关于加快场景创新以人工智能高水平应用促进经济高质量发展的指导意见[EB/OL]. (2022-07-29)[2025-06-10].http://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/fgzc/gfxwj/gf/202208/t20220812_186214.html. [6] 杨珊, 吴艺新, 何雨欣, 等. 人工智能应用于老年人跌倒的文献计量学分析[J]. 军事护理, 2024,41(4): 61-65. [7] SAADEH W, BUTTS A, ALTAFM A B. A patient-specific single sensor IoT-based wearable fall prediction and detection system[J]. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(5): 995-1003. [8] TUNCA C, SALUR G, ERSOY C. Deep learning for fall risk assessment with inertial sensors: utilizing domain knowledge in spatio-temporal gait parameters[J]. IEEE J Biomed Health Inform, 2020, 24(7): 1994-2005. [9] VELUSAMY A, AKILANDESWARI J, PRABHU R. A comprehensive review on machine learning models for real time fall prediction using wearable sensor-based gait analysis[C] //Proceedings of the 5th international conference on inventive research in computing applications, 2023, 601-607. [10] CAICEDO P E, RENGIFO C F, RODRIGUEZ L E, et al. Dataset for gait analysis and assessment of fall risk for older adults[J]. Data Brief, 2020, 33: 106550. [11] ISHIZU F, TAJIMA T, ABE T. Analysis and prediction of patient falls from beds using an infrared depth sensor[J]. Sensor Mater, 2023, 35(11):3871-3881. [12] FORBES G, MASSIE S, CRAW S. Fall prediction using behavioural modelling from sensor data in smart homes[J]. Artif Intell Rev, 2020, 53(2): 1071-1091. [13] CHO I, BOOE H, CHUNG E, et al. Novel approach to inpatient fall risk prediction and its cross-site validation using time-variant data[J]. J Med Internet Res, 2019, 21(2): e11505. [14] ALTHOBAITI T, KATSIGIANNIS S, RAMZAN N. Triaxial accelerometer-based falls and activities of daily life detection using machine learning[J]. Sensors, 2020, 20(13): 3777. [15] MEYER B M, TULIPANI L J, GURCHIEK R D, et al. Wearables and deep learning classify fall risk from gait in multiple sclerosis[J]. IEEE J Biomed Health Inform, 2021, 25(5): 1824-1831. [16] WANG S, VARAS-DIAZ G, DUSANE S, et al. Slip-induced fall-risk assessment based on regular gait pattern in older adults[J]. J Biomech, 2019, 96: 109334. [17] SIDAWAY B, BENNETT J, BERENYI S, et al. The identification of fall risk through tests of mediolateral stability during gait[J]. Exp Gerontol, 2022, 163: 111803. [18] DU S, MA X, WANG J, et al. Spatiotemporal gait parameter fluctuations in older adults affected by mild cognitive impairment: comparisons among three cognitive dual-task tests[J]. BMC Geriatr, 2023, 23(1): 603. [19] JUNGEN P, BATISTA J P, KIRCHNER M, et al. Variability and symmetry of gait kinematics under dual-task performance of older patients with depression[J]. Aging Clin Exp Res, 2023, 35(2): 283-291. [20] NOURIANI A, JONASON A, SABAL L T, et al. Real world validation of activity recognition algorithm and development of novel behavioral biomarkers of falls in aged control and movement disorder patients[J]. Front Aging Neurosci, 2023, 15: 1117802. [21] ULLRICH M, ROTH N, KUDERLE A, et al. Fall risk prediction in Parkinson’s disease using real-world inertial sensor gait data[J]. IEEE J Biomed Health Inform, 2023, 27(1): 319-328. [22] SCHNIEPP R, HUPPERT A, DECKER J, et al. Fall prediction in neurological gait disorders: differential contributions from clinical assessment, gait analysis, and daily-life mobility monitoring[J]. J Neurol, 2021, 268(9): 3421-3434. [23] HUA A, QUICKSALL Z, DI C, et al. Accelerometer-based predictive models of fall risk in older women: a pilot study[J]. NPJ Digit Med, 2018, 1: 25. [24] CHOI A, KIMT H, YUHAI O, et al. Deep learning-based near-fall detection algorithm for fall risk monitoring system using a single inertial measurement unit[J]. IEEE Trans Neural Syst Rehabil Eng, 2022, 30: 2385-2394. [25] RAZMARA J, ZABOLI M H, HASSANKHANI H. Elderly fall risk prediction based on a physiological profile approach using artificial neural networks[J]. Health Informatics J, 2018, 24(4): 410-418. [26] EL MARHRAOUI Y, BOUILLAND S, BOUKALLEL M, et al. CNN-based self-attention weight extraction for fall event prediction using balance test score[J]. Sensors, 2023, 23(22): 9194. [27] CHEN B, CHEN C, HU J, et al. Computer vision and machine learning-based gait pattern recognition for flat fall prediction[J]. Sensors, 2022, 22(20): 7960. [28] SHAO L, WANG Z, XIE X, et al. Development and external validation of a machine learning-based fall prediction model for nursing home residents: a prospective cohort study[J]. J Am Med Dir Assoc, 2024, 25(9): 105169. [29] MOHAMMAD Z, ANWARY A R, MRIDHA M F, et al. An enhanced ensemble deep neural network approach for elderly fall detection system based on wearable sensors[J]. Sensors, 2023, 23(10): 4774. [30] LIN C L, CHIU F H, CHEN F H, et al. Fall monitoring for the elderly using wearable inertial measurement sensors on eyeglasses[J]. IEEE Sensors Letters, 2020,4(6):1-4. [31] 石珏. 基于姿态估计的跌倒检测方法研究[D].杭州: 浙江工业大学, 2020. [32] ZERROUKI N, HOUACINE A. Combined curvelets and hidden Markov models for human fall detection[J]. Multimed Tools Appl, 2018, 77(5):6405-6424. [33] 张震. 老人居家环境与跌倒监测系统设计与实现[D]. 重庆: 重庆邮电大学, 2022. [34] 杨松铭. 基于声音信号和深度学习的室内跌倒识别[D].桂林: 桂林理工大学, 2023. [35] HUO C, SHAO G, CHEN T, et al. Effectiveness of unilateral lower-limb exoskeleton robot on balance and gait recovery and neuroplasticity in patients with subacute stroke: a randomized controlled trial[J]. J Neuroeng Rehabil, 2024, 21(1): 213. [36] SHIN J H, BYEON N, YU H, et al. Clinical effects of walking exercise program for older adults applied with an exercise assist robot (Bot Fit): a randomized controlled trial[J]. J Bodyw Mov Ther, 2024, 40: 493-499. [37] BOWMAN T, GERVASONI E, AMICO A P, et al. What is the impact of robotic rehabilitation on balance and gait outcomes in people with multiple sclerosis? A systematic review of randomized control trials[J]. Eur J Phys Rehabil Med, 2021, 57(2): 246-253. [38] LEEM H, TIANM Y, KIMM K. The effectiveness of overground robot exoskeleton gait training on gait outcomes, balance, and motor function in patients with stroke: a systematic review and meta-analysis of randomized controlled trials[J]. Brain Sci, 2024, 14(8): 834. [39] YAN Q, HUANG J, TAO C, et al. Intelligent mobile walking-aids: perception, control and safety[J]. Adv Robot, 2020, 34(1): 2-18. [40] TRUJILLO-LEÓN A, ADY R, REVERSAT D, et al. Robotic cane controlled to adapt automatically to its user gait characteristics[J]. Front Robot AI, 2020, 7: 105. [41] BALA M M, VASUNDHARAD N, HARITHA A, et al. Design, development and performance analysis of cognitive assisting aid with multi sensor fused navigation for visually impaired people[J]. J Big Data, 2023, 10(1): 21. [42] 曹武警, 王大帅, 何勇, 等. 外骨骼机器人研发应用现状与挑战[J]. 人工智能, 2022, 9(3): 105-112. [43] AWUAH W A, AHLUWALIA A, DARKO K, et al. Bridging minds and machines: the recent advances of brain-computer interfaces in neurological and neurosurgical applications[J]. World Neurosurg, 2024, 189: 138-153. [44] GAO W, CUI Z, YU Y, et al. Application of a brain-computer interface system with visual and motor feedback in limb and brain functional rehabilitation after stroke: case report[J]. Brain Sci, 2022, 12(8): 1083. [45] ZHAO C G, JU F, SUN W, et al. Effects of training with abrain-computer interface-controlled robot on rehabilitation outcome in patients with subacute stroke: a randomized controlled trial[J]. Neurol Ther, 2022, 11(2): 679-695. [46] CHUNG E, LEE B H, HWANG S. Therapeutic effects of brain-computer interface-controlled functional electrical stimulation training on balance and gait performance for stroke: a pilot randomized controlled trial[J]. Medicine, 2020, 99(51): e22612. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|