Practical Geriatrics ›› 2025, Vol. 39 ›› Issue (8): 768-772.doi: 10.3969/j.issn.1003-9198.2025.08.003
Previous Articles Next Articles
YANG Huijuan, LIU Shunying, SU Jing, ZENG Liting
Received:
2025-06-15
Online:
2025-08-20
Published:
2025-08-19
Contact:
ZENG Liting, Email:812963313@qq.com
CLC Number:
YANG Huijuan, LIU Shunying, SU Jing, ZENG Liting. Advances in the application of artificial intelligence in the full-course management of Alzheimer’s disease[J]. Practical Geriatrics, 2025, 39(8): 768-772.
[1] 王刚, 齐金蕾, 刘馨雅,等.中国阿尔茨海默病报告2024[J]. 诊断学理论与实践, 2024, 23(3): 219-256. [2] PASSERI E, ELKHOURY K, MORSINK M, et al. Alzheimer’s disease: treatment strategies and their limitations[J]. Int J Mol Sci, 2022, 23(22):13954. [3] SØRENSEN L, IGEL C, HANSEN N L, et al. Early detection of Alzheimer’s disease using MRI hippocampal texture[J]. Hum Brain Mapp, 2016, 37(3): 1148-1161. [4] DE OLIVEIRA M S, BALTHAZAR M F, D’ABREU A, et al. MR imaging texture analysis of the corpus callosum and thalamus in amnestic mild cognitive impairment and mild Alzheimer disease[J]. AJNR Am J Neuroradiol, 2011, 32(1): 60-66. [5] JIN D, ZHOU B, HAN Y, et al. Generalizable, reproducible, and neuroscientifically interpretable imaging biomarkers for Alzheimer’s disease[J]. Adv Sci, 2020, 7(14): 2000675. [6] FALGÀS N, SÁNCHEZ-VALLE R, BARGALLÓ N, et al. Hippocampal atrophy has limited usefulness as a diagnostic biomarker on the early onset Alzheimer’s disease patients: a comparison between visual and quantitative assessment[J]. Neuroimage Clin, 2019, 23: 101927. [7] GALTON C J, GOMEZ-ANSON B, ANTOUN N, et al. Temporal lobe rating scale: application to Alzheimer’s disease and frontotemporal dementia[J]. J Neurol Neurosurg Psychiatry, 2001, 70(2): 165-173. [8] FALGÀS N, BALASA M, BARGALLÓ N, et al. Diagnostic accuracy of MRI visual rating scales in the diagnosis of early onset cognitive impairment[J]. J Alzheimers Dis, 2020, 73(4): 1575-1583. [9] KOIKKALAINEN J R, RHODIUS-MEESTER H F M, FREDERIKSEN K S, et al. Automatically computed rating scales from MRI for patients with cognitive disorders[J]. Eur Radiol, 2019, 29(9):4937-4947. [10] MÖLLER C, PIJNENBURG Y A L, VAN DER FLIER W M, et al. Alzheimer disease and behavioral variant frontotemporal dementia: automatic classification based on cortical atrophy for single-subject diagnosis[J]. Radiology, 2016, 279(3): 838-848. [11] HOSSEINI-ASL E, GHAZAL M, MAHMOUD A, er al. Alzheimer’s disease diagnostics by a 3D deeply supervised adaptable convolutional network[J]. Front Biosci: Landmark Ed, 2018, 23(3):584-596. [12] LIU S, LIU S, CAI W, et al. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease[J]. IEEE Trans Biomed Eng, 2015, 62(4): 1132-1140. [13] GRUESO S,VIEJO-SOBERA R. Machine learning methods for predicting progression from mild cognitive impairment to Alzheimer’s disease dementia: a systematic review[J]. Alzheimers Res Ther, 2021, 13(1): 162. [14] DREW P J. Vascular and neural basis of the BOLD signal[J]. Curr Opin Neurobiol, 2019, 58: 61-69. [15] JU R, HU C, ZHOU P, et al. Early diagnosis of Alzheimer’s disease based on resting-state brain networks and deep learning[J]. IEEE/ACM Trans Comput Biol Bioinform, 2019, 16(1): 244-257. [16] MEIER T B, DESPHANDE A S, VERGUN S, et al. Support vector machine classification and characterization of age-related reorganization of functional brain networks[J]. Neuroimage, 2012, 60(1): 601-613. [17] RAMZAN F, KHAN M U G, REHMAT A, et al. A deep learning approach for automated diagnosis and multi-class classification of Alzheimer’s disease stages using resting-state fMRI and residual neural networks[J]. J Med Syst, 2019, 44(2): 37. [18] MAYO C D, GARCIA-BARRERA M A, MAZEROLLE E L, et al. Relationship between DTI metrics and cognitive function in Alzheimer’s disease[J].Front Aging Neurosci, 2019, 10:436. [19] WEE C Y, YAP P T, LI W, et al. Enriched white matter connectivity networks for accurate identification of MCI patients[J]. Neuroimage, 2011, 54(3): 1812-1822. [20] MARZBAN E N, ELDEIB A M, YASSINE I A, et al. Alzheimer’s disease diagnosis from diffusion tensor images using convolutional neural networks[J]. PLoS One, 2020, 15(3): e0230409. [21] JACK C R Jr, ANDREWS S J, BEACH T G, et al. Revised criteria for the diagnosis and staging of Alzheimer’s disease[J]. Nat Med, 2024, 30(8): 2121-2124. [22] SUPPIAH S, DIDIER M A,VINJAMURI S. The who, when, why, and how of PET amyloid imaging in management of Alzheimer’s disease—review of literature and interesting images[J]. Diagnostics, 2019, 9(2): 65. [23] PAN X, ADEL M, FOSSATI C, et al. Multilevel feature representation of FDG-PET brain images for diagnosing Alzheimer’s disease[J]. IEEE J Biomed Health Inform, 2019, 23(4): 1499-1506. [24] CHAVES R, RAMÍREZ J, GÓRRIZ J M. Integrating discretization and association rule-based classification for Alzheimer’s disease diagnosis[J]. Expert Syst Appl, 2013, 40(5): 1571-1578. [25] HOJJATI S H, EBRAHIMZADEH A, KHAZAEE A, et al. Predicting conversion from MCI to AD by integrating rs-fMRI and structural MRI[J]. Comput Biol Med, 2018, 102: 30-39. [26] ZHU X, SUKH I, SHEN D. A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis[J]. Neuroimage, 2014, 100: 91-105. [27] JAMES C, RANSON J M, EVERSON R, et al. Performance of machine learning algorithms for predicting progression to dementia in memory clinic patients[J]. JAMA Netw Open, 2021, 4(12): e2136553. [28] WANG X, JIAO B, LIU H, et al. Machine learning based on Optical Coherence Tomography images as a diagnostic tool for Alzheimer’s disease[J]. CNS Neurosci Ther, 2022, 28(12): 2206-2217. [29] BADER J M, GEYER P E, MÜLLER J B, et al. Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer’s disease[J]. Mol Syst Biol, 2020, 16(6): e9356. [30] GIORGIO J, JAGUST W J, BAKER S, et al. A robust and interpretable machine learning approach using multimodal biological data to predict future pathological tau accumulation[J]. Nat Commun, 2022, 13(1): 1887. [31] 殷潇潇,王思文,王贺,等.语音重复任务在轻度认知功能障碍检测中的应用[J]. 中国神经精神疾病杂志, 2024, 50(4):247-251. [32] RODRIGUEZ S, HUG C, TODOROV P, et al. Machine learning identifies candidates for drug repurposing in Alzheimer’s disease[J]. Nat Commun, 2021, 12(1): 1033. [33] XIE C, ZHUANG X X, NIU Z, et al. Amelioration of Alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow[J]. Nat Biomed Eng, 2022, 6(1): 76-93. [34] YANG X, WANG Y, BYRNE R, et al. Concepts of artificial intelligence for computer-assisted drug discovery[J]. Chem Rev, 2019, 119(18): 10520-10594. [35] QIU Y,CHENG F. Artificial intelligence for drug discovery and development in Alzheimer’s disease[J]. Curr Opin Struct Biol, 2024, 85: 102776. [36] KALE M, WANKHEDE N, PAWAR R, et al. AI-driven innovations in Alzheimer’s disease: integrating early diagnosis, personalized treatment, and prognostic modelling[J]. Ageing Res Rev, 2024, 101: 102497. [37] ANGELUCCI F, AI A R, PIENDEL L, et al. Integrating AI in fighting advancing Alzheimer: diagnosis, prevention, treatment, monitoring, mechanisms, and clinical trials[J]. Curr Opin Struct Biol, 2024, 87: 102857. [38] SHEEHY L, BOUCHARD S, KAKKAR A, et al. Development and initial testing of an artificial intelligence-based virtual reality companion for people living with dementia in long-term care[J]. J Clin Med, 2024, 13(18): 5574. [39] RASHID N L A, LEOW Y, KLAININ-YOBAS P, et al. The effectiveness of a therapeutic robot, ‘Paro’, on behavioural and psychological symptoms, medication use, total sleep time and sociability in older adults with dementia: a systematic review and meta-analysis[J]. Int J Nurs Stud, 2023, 145: 104530. [40] LIVINGSTON G, HUNTLEY J, LIU K Y, et al. Dementia prevention, intervention, and care: 2024 report of the lancet standing commission[J]. Lancet, 2024, 404(10452): 572-628. |
[1] | HE Xinxin, XIE Dongmei, WANG Xiaoling, LI Ying, GAO Langli. Research progress in the application of artificial intelligence in the care for disabled elderly [J]. Practical Geriatrics, 2025, 39(8): 757-761. |
[2] | JIANG Huizeng, LIU Jinna, ZHANG Dandan, ZHANG Jie. Advances of the application of artificial intelligence in fall risk management in the elderly [J]. Practical Geriatrics, 2025, 39(8): 762-767. |
[3] | LUO Linyu, XIE Dongmei, ZHANG Meng, YUE Jirong, LYU Juan. Current applications of artificial intelligence in dysphagia [J]. Practical Geriatrics, 2025, 39(8): 773-777. |
[4] | YUAN Pingqiao, LI Zemei, HAN Yao, SUN Zhaoyu. Advances in the application of artificial intelligence in health management in the elderly patients [J]. Practical Geriatrics, 2025, 39(8): 778-781. |
[5] | ZHONG Yi, FENG Yue, ZHANG Xinlong, DING Rui, SI Yanna. Research progress in single-cell RNA sequencing for Alzheimer’s disease [J]. Practical Geriatrics, 2025, 39(8): 857-861. |
[6] | WANG Yang, LI Daiping, YANG Yanwu, HE Bofei, YUE Jirong, DONG Birong, GE Meiling. Current status and prospects of the application of artificial intelligence in geriatric medicine teaching [J]. Practical Geriatrics, 2025, 39(7): 753-756. |
[7] | ZHU Xiangyu, HANG Lejia, WANG Yu, WU Yuyi, ZHAO Yijing, ZHU Bei, HUANG Jingjing. Advances in artificial intelligence for cardiovascular disease in the elderly [J]. Practical Geriatrics, 2025, 39(6): 621-625. |
[8] | GU Xingyue, GAO Wei, LU Xiang. Advances in the study of enzymatic protein glycosylation in Alzheimer’s disease [J]. Practical Geriatrics, 2025, 39(6): 631-635. |
[9] | WANG Yun, FU Liping. Significance of retinal structural and functional changes in the diagnosis of Alzheimer’s disease in high-altitude regions [J]. Practical Geriatrics, 2025, 39(5): 461-465. |
[10] | GAO Jingyu, WANG Ting, TAN Simin. Research advance of frailty assessment in patients with multiple myeloma [J]. Practical Geriatrics, 2025, 39(5): 534-538. |
[11] | ZUO Rui, GU Shuangshuang, WANG Jun. Research progress of exosomes in elderly patients with sepsis: focus on the pathopathological characteristics and clinical challenges in the elderly [J]. Practical Geriatrics, 2025, 39(4): 330-335. |
[12] | WANG Yan, XU Jie, GU Xiaoping. Research advances on association between fatty acid metabolism and Alzheimer’s disease [J]. Practical Geriatrics, 2025, 39(4): 415-419. |
[13] | LIN Xiaoqi, ZHAO Xinjing, WU Yashuang, ZHAO Wei, CHEN Chen, GAO Tianyu, ZHOU Guoyu. Advances of the mechanisms of gender differences in Alzheimer’s disease [J]. Practical Geriatrics, 2025, 39(4): 420-425. |
[14] | LIU Xuande, ZHOU Shigong, XU Zhuqin, SHAN Shoujie. Levels and diagnostic value of serum semaphorin 7A in elderly patients with acute coronary syndrome [J]. Practical Geriatrics, 2025, 39(3): 294-297. |
[15] | LIU Shu. A review of impact of cognitive reserve on cognitive function [J]. Practical Geriatrics, 2025, 39(3): 308-311. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|