Practical Geriatrics ›› 2025, Vol. 39 ›› Issue (4): 415-419.doi: 10.3969/j.issn.1003-9198.2025.04.019
Previous Articles Next Articles
WANG Yan, XU Jie, GU Xiaoping
Received:
2024-06-02
Online:
2025-04-20
Published:
2025-04-22
Contact:
GU Xiaoping,Email:xiaopinggu@nju.edu.cn
CLC Number:
WANG Yan, XU Jie, GU Xiaoping. Research advances on association between fatty acid metabolism and Alzheimer’s disease[J]. Practical Geriatrics, 2025, 39(4): 415-419.
[1] 2023 Alzheimer’s disease facts and figures[J].Alzheimers Dement, 2023, 19(4): 1598-1695. [2] GDB 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019[J].Lancet Public Health, 2022, 7(2): e105-e125. [3] ALZHEIMER A, STELZMANN R A, SCHNITZLEIN H N,et al. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”[J].Clin Anat, 1995, 8(6): 429-431. [4] YIN F. Lipid metabolism and Alzheimer’s disease: clinical evidence, mechanistic link and therapeutic promise[J].FEBS J, 2023, 290(6): 1420-1453. [5] MUKHERJEE S, SURESH S N. Neuron-astrocyte liaison to maintain lipid metabolism of brain[J].Trends Endocrinol Metab, 2019, 30(9): 573-575. [6] ERASO-PICHOT A, BRASÓ-VIVES M, GOLBANO A, et al. GSEA of mouse and human mitochondriomes reveals fatty acid oxidation in astrocytes[J].Glia, 2018, 66(8): 1724-1735. [7] IOANNOU M S, JACKSON J, SHEU S H, et al. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity[J].Cell, 2019, 177(6): 1522-1535.e14. [8] KARCH C M, GOATE A M. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis[J].Biol Psychiatry, 2015, 77(1): 43-51. [9] QI G, MI Y, SHI X, et al. ApoE4 impairs neuron-astrocyte coupling of fatty acid metabolism[J].Cell Rep, 2021, 34(1): 108572. [10]BOGIE J F J, HAIDAR M, KOOIJ G, et al. Fatty acid metabolism in the progression and resolution of CNS disorders[J].Adv Drug Deliv Rev, 2020, 159: 198-213. [11]THANGAVEL R, KEMPURAJ D, ZAHEER S, et al. Glia maturation factor and mitochondrial uncoupling proteins 2 and 4 expression in the temporal cortex of Alzheimer’s disease brain[J].Front Aging Neurosci, 2017, 9: 150. [12]ATES G, GOLDBERG J, CURRAIS A, et al. CMS121, a fatty acid synthase inhibitor, protects against excess lipid peroxidation and inflammation and alleviates cognitive loss in a transgenic mouse model of Alzheimer’s disease[J].Redox Biol, 2020, 36: 101648. [13]DIMAS P, MONTANI L, PEREIRA J A, et al. CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes[J].eLife, 2019, 8: e44702. [14]CAMARGO N, GOUDRIAAN A, VAN DEIJK A F, et al. Oligodendroglial myelination requires astrocyte-derived lipids[J].PLoS Biol, 2017, 15(5): e1002605. [15]GUTTENPLAN K A, WEIGEL M K, PRAKASH P, et al. Neurotoxic reactive astrocytes induce cell death via saturated lipids[J].Nature, 2021, 599(7883): 102-107. [16]NASRABADY S E, RIZVI B, GOLDMAN J E, et al. White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes[J].Acta Neuropathol Commun, 2018, 6(1): 22. [17]OPERTO G, CACCIAGLIA R, GRAU-RIVERA O, et al. White matter microstructure is altered in cognitively normal middle-aged APOE-ε4 homozygotes[J].Alzheimers Res Ther, 2018, 10(1): 48. [18]CRISTOFANO A, SAPERE N, LA MARCA G, et al. Serum levels of acyl-carnitines along the continuum from normal to Alzheimer’s dementia[J].PLoS One, 2016, 11(5): e0155694. [19]CIAVARDELLI D, PIRAS F, CONSALVO A, et al. Medium-chain plasma acylcarnitines, ketone levels, cognition, and gray matter volumes in healthy elderly, mildly cognitively impaired, or Alzheimer’s disease subjects[J].Neurobiol Aging, 2016, 43: 1-12. [20]SCHÖNFELD P, REISER G. Brain energy metabolism spurns fatty acids as fuel due to their inherent mitotoxicity and potential capacity to unleash neurodegeneration[J].Neurochem Int, 2017, 109: 68-77. [21]WILSOND M 3rd, COOKSONM R, VANDENBOSCHL, et al. Hallmarks of neurodegenerative diseases[J].Cell, 2023, 186(4): 693-714. [22]HENEKA M T, CARSON M J, EL KHOURY J, et al. Neuroinflammation in Alzheimer’s disease[J].Lancet Neurol, 2015, 14(4): 388-405. [23]LENG F, EDISON P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?[J].Nat Rev Neurol, 2021, 17(3): 157-172. [24]MI Y, QI G, VITALI F, et al. Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration[J].Nat Metab, 2023, 5(3): 445-465. [25]LIDDELOW S A, GUTTENPLAN K A, CLARKE L E, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J].Nature, 2017, 541(7638): 481-487. [26]PATEL N S, PARIS D, MATHURA V, et al. Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease[J].J Neuroinflammation, 2005, 2(1): 9. [27]FÜNFSCHILLING U, SUPPLIEL M, MAHAD D, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity[J].Nature, 2012, 485(7399): 517-521. [28]EBERT D, HALLER R G, WALTON M E. Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy[J].J Neurosci, 2003, 23(13): 5928-5935. [29]KNOBLOCH M, PILZ G A, GHESQUIÈRE B, et al. A fatty acid oxidation-dependent metabolic shift regulates adult neural stem cell activity[J].Cell Rep, 2017, 20(9): 2144-2155. [30]HAMILTON L K, DUFRESNE M, JOPPÉ S E, et al. Aberrant lipid metabolism in the forebrain niche suppresses adult neural stem cell proliferation in an animal model of Alzheimer’s disease[J].Cell Stem Cell, 2015, 17(4): 397-411. [31]NOLFI-DONEGAN D, BRAGANZA A, SHIVA S. Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement[J].Redox Biol, 2020, 37: 101674. [32]PLASCENCIA-VILLA G, PERRY G. Roles of oxidative stress in synaptic dysfunction and neuronal cell death in Alzheimer’s disease[J].Antioxidants, 2023, 12(8): 1628. [33]BRADLEY M A, MARKESBERY W R, LOVELL M A. Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease[J].Free Radic Biol Med, 2010, 48(12): 1570-1576. [34]CRIVELLI S M, GIOVAGNONI C, VISSEREN L, et al. Sphingolipids in Alzheimer’s disease, how can we target them?[J].Adv Drug Deliv Rev, 2020, 159: 214-231. [35]GIORGI C, MISSIROLI S, PATERGNANI S, et al. Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications[J].Antioxid Redox Signal, 2015, 22(12): 995-1019. [36]BHATTACHARYYA R, BLACK S E, LOTLIKAR M S, et al. Axonal generation of amyloid-β from palmitoylated APP in mitochondria-associated endoplasmic reticulum membranes[J].Cell Rep, 2021, 35(7): 109134. [37]SIEGEL S J, BIESCHKE J, POWERSE T, et al. The oxidative stress metabolite 4-hydroxynonenal promotes Alzheimer protofibril formation[J].Biochemistry, 2007, 46(6): 1503-1510. [38]OWEN J B, SULTANA R, ALUISE C D, et al. Oxidative modification to LDL receptor-related protein 1 in hippocampus from subjects with Alzheimer disease: implications for Aβ accumulation in AD brain[J].Free Radic Biol Med, 2010, 49(11): 1798-1803. [39]DO K V, KAUTZMANN M I, JUN B, et al. Elovanoids counteract oligomeric β-amyloid-induced gene expression and protect photoreceptors[J].Proc Natl Acad Sci USA, 2019, 116(48): 24317-24325. [40]FONTEH A N, CIPOLLA M, CHIANG J, et al. Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions, and are altered in Alzheimer’s disease[J].PLoS One, 2014, 9(6): e100519. [41]WEI B Z, LI L, DONG C W, et al. The relationship of omega-3 fatty acids with dementia and cognitive decline: evidence from prospective cohort studies of supplementation, dietary intake, and blood markers[J].Am J Clin Nutr, 2023, 117(6): 1096-1109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|