[1] LI N, TAN F, CHEN W, et al. One-off low-dose CT for lung cancer screening in China: a multicentre, population-based, prospective cohort study[J]. Lancet Respir Med, 2022, 10(4): 378-391. [2] ALLEMANI C, MATSUDA T, DI CARLO V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. Lancet, 2018, 391(10125): 1023-1075. [3] LÓPEZ-OTÍN C, PIETROCOLA F, ROIZ-VALLE D, et al. Meta-hallmarks of aging and cancer[J]. Cell Metab, 2023, 35(1): 12-35. [4] 陈璐, 樊俊宁, 孙点剑一, 等. 生物学年龄评价方法进展[J]. 中华流行病学杂志, 2021, 42(9): 1683-1688. [5] RUTLEDGE J, OH H, WYSS-CORAY T. Measuring biological age using omics data[J]. Nat Rev Genet, 2022, 23(12): 715-727. [6] MOADDEL R, UBAIDA-MOHIEN C, TANAKA T, et al. Proteomics in aging research: a roadmap to clinical, translational research[J]. Aging Cell, 2021, 20(4): e13325. [7] LIU W S, YOU J, CHEN S D, et al. Plasma proteomics identify biomarkers and undulating changes of brain aging[J]. Nat Aging, 2025, 5(1): 99-112. [8] SHEN S, LI Z, JIANG Y, et al. A large-scale exome-wide association study identifies novel germline mutations in lung cancer[J]. Am J Respir Crit Care Med, 2023, 208(3): 280-289. [9] LI H, DU S, DAI J, et al. Proteome-wide Mendelian randomization identifies causal plasma proteins in lung cancer[J]. iScience, 2024, 27(2): 108985. [10] AUSTIN ARGENTIERI M, XIAO S, BENNETT D, et al. Proteomic aging clock predicts mortality and risk of common age-related diseases in diverse populations[J]. Nat Med, 2024, 30(9): 2450-2460. [11] KURSA M B, JANKOWSKI A, RUDNICKI W R. Boruta-a system for feature selection[J]. Fundam Inform, 2010, 101(4): 271-285. [12] KE G, MENG Q, FINLEY T, et al. Lightgbm: a highly efficient gradient boosting decision tree [EB/OL]. https://www.microsoft.com/en-us/research/publication/lightgbm-a-highly-efficient-gradient-boosting-decision-tree/. [13] SUN B B, CHIOU J, TRAYLOR M, et al. Plasma proteomic associations with genetics and health in the UK Biobank[J]. Nature, 2023, 622(7982): 329-338. [14] CAI Y, SONG W, LI J, et al. The landscape of aging [J]. Science China Life sciences, 2022, 65(12): 2354-454. [15] LÓPEZ-OTÍN C, BLASCO M A, PARTRIDGE L, et al. Hallmarks of aging: an expanding universe[J]. Cell, 2023, 186(2): 243-278. [16] 孙泽东, 任斌辉. 衰老积累的表观遗传学改变与肿瘤的发生发展[J]. 实用老年医学, 2024, 38(9): 953-957. [17] 沈思鹏, 张汝阳, 魏永越, 等. 多组学数据整合分析的统计方法研究进展[J]. 中华疾病控制杂志, 2018, 22(8): 763-765, 771. [18] PARTRIDGE L, DEELEN J, ELINE SLAGBOOM P. Facing up to the global challenges of ageing[J]. Nature, 2018, 561(7721): 45-56. [19] LEHALLIER B, GATE D, SCHAUM N, et al. Undulating changes in human plasma proteome profiles across the lifespan[J]. Nat Med, 2019, 25(12): 1843-1850. [20] LIU Z, KUO P L, HORVATH S, et al. A new aging measure captures morbidity and mortalityrisk across diverse subpopulations from NHANES IV: a cohort study[J]. PLoS Med, 2018, 15(12): e1002718. [21] ZHANG J, MUCS D, NORINDER U, et al. LightGBM: an effective and scalable algorithm for prediction of chemical toxicity-application to the Tox21 and mutagenicity data sets[J]. J Chem Inf Model, 2019, 59(10): 4150-4158. [22] ELDJARN G H, FERKINGSTAD E, LUND S H, et al. Large-scale plasma proteomics comparisons through genetics and disease associations[J]. Nature, 2023, 622(7982): 348-358. [23] TANAKA T, BIANCOTTO A, MOADDEL R, et al. Plasma proteomic signature of age in healthy humans[J]. Aging Cell, 2018, 17(5): e12799. [24] ZHANG S, WANG Z, WANG Y, et al. A metabolomic profile of biological aging in 250, 341 individuals from the UK Biobank[J]. Nat Commun, 2024, 15(1): 8081. [25] WANG T, DUAN W, JIA X, et al. Associations of combined phenotypic ageing and genetic risk with incidence of chronic respiratory diseases in the UK Biobank: a prospective cohort study[J]. Eur Respir J, 2024, 63(2): 2301720. |