Practical Geriatrics ›› 2023, Vol. 37 ›› Issue (9): 886-889.doi: 10.3969/j.issn.1003-9198.2023.09.006
Previous Articles Next Articles
Received:
2023-04-20
Online:
2023-09-20
Published:
2023-09-21
CLC Number:
[1] 中国心血管健康与疾病报告编写组.中国心血管健康与疾病报告 2021概要 [J].中国循环杂志, 2022,37(6):553-578. [2] TAYLOR R S, DALAL H M, MCDONAGH S T J. The role of cardiac rehabilitation in improving cardiovascular outcomes [J]. Nat Rev Cardiol, 2022, 19(3): 180-194. [3] KRITTANAWONG C, ZHANG H, WANG Z, et al. Artificial intelligence in precision cardiovascular medicine [J]. J Am Coll Cardiol, 2017, 69(21): 2657-2664. [4] HENGLIN M, STEIN G, HUSHCHA P V, et al. Machine learning approaches in cardiovascular imaging [J]. Circ Cardiovasc Imaging, 2017, 10(10):e005614. [5] 袁丽霞,丁荣晶. 中国心脏康复与二级预防指南解读[J]. 中国循环杂志, 2019, 34(S1): 86-90. [6] 李菊红,李亮,张秀娟,等.冠心病介入术后患者心脏康复的研究进展[J].中西医结合心血管病杂志,2017, 5(33): 12-13. [7] SIMON M, KORN K, CHO L, et al. Cardiac rehabilitation: a class 1 recommendation [J]. Cleve Clin J Med, 2018, 85(7): 551-558. [8] MCMAHON S R, ADES P A, THOMPSON P D. The role of cardiac rehabilitation in patients with heart disease [J]. Trends Cardiovasc Med, 2017, 27(6): 420-425. [9] TSAY D, PATTERSON C. From machine learning to artificial intelligence applications in cardiac care [J]. Circulation, 2018, 138(22): 2569-2575. [10] LEE H E, WANG W C, LU S W, et al. Home-based mobile cardio-pulmonary rehabilitation consultant system [J]. Annu Int Conf IEEE Eng Med Biol Soc, 2011, 2011: 989-992. [11] BIE R, XU S, ZHANG G, et al. Efficient fine arrhythmia detection based on DCG P-T features [J]. J Med Syst, 2016, 40(7): 168. [12] KWON J M, KIM K H, JEON K H, et al. Artificial intelligence algorithm for predicting cardiac arrest using electrocardiography [J]. Scand J Trauma Resusc Emerg Med, 2020, 28(1): 98. [13] CHEN J, PU H, WANG D. Artificial intelligence analysis of EEG amplitude in intensive heart care [J]. J Healthc Eng, 2021, 2021: 6284035. [14] DE CANNIÈRE H, CORRADI F, SMEETS C J P, et al. Wearable monitoring and interpretable machine learning can objectively track progression in patients during cardiac rehabilitation [J]. Sensors: Basel, 2020, 20(12):3601. [15] AWAN S E, SOHEL F, SANFILIPPO F M, et al. Machine learning in heart failure: ready for prime time [J]. Curr Opin Cardiol, 2018, 33(2): 190-195. [16] SHAH S J, KATZ D H, SELVARAJ S, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction [J]. Circulation, 2015, 131(3): 269-279. [17] CIKES M, SANCHEZ-MARTINEZ S, CLAGGETT B, et al. Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy [J]. Eur J Heart Fail, 2019, 21(1): 74-85. [18] DOR-HAIM H, KATZBURG S, LEIBOWITZ D. A novel digital platform for a monitored home-based cardiac rehabilitation program [J]. J Vis Exp, 2019 (146). DOI: 10.3791/59019. [19] VOURGANAS I, STANKOVIC V, STANKOVIC L. Individualised responsible artificial intelligence for home-based rehabilitation [J]. Sensors: Basel, 2020, 21(1):2. [20] MENEU T, MARTINEZ-ROMERO A, MARTINEZ-MILLANA A, et al. An integrated advanced communication and coaching platform for enabling personalized management of chronic cardiovascular diseases [J]. Annu Int Conf IEEE Eng Med Biol Soc, 2011, 2011: 1563-1566. [21] SCHINDELHOLZ M, HUNT K J. Feedback control of heart rate during robotics-assisted treadmill exercise [J]. Technol Health Care, 2012, 20(3): 179-194. [22] LARA J S, CASAS J, AGUIRRE A, et al. Human-robot sensor interface for cardiac rehabilitation [J]. IEEE Int Conf Rehabil Robot, 2017, 2017: 1013-1018. [23] SOTIRAKOS S, FOUDA B, MOHAMED RAZIF N A, et al. Harnessing artificial intelligence in cardiac rehabilitation, a systematic review [J]. Future Cardiol, 2022, 18(2): 154-164. [24] AGUIRRE A, CASAS J, CESPEDES N, et al. Feasibility study: towards estimation of fatigue level in robot-assisted exercise for cardiac rehabilitation [J]. IEEE Int Conf Rehabil Robot, 2019, 2019: 911-916. [25] STOLLER O, DE BRUIN E D, SCHINDELHOLZ M, et al. Efficacy of feedback-controlled robotics-assisted treadmill exercise to improve cardiovascular fitness early after stroke: a randomized controlled pilot trial [J]. J Neurol Phys Ther, 2015, 39(3): 156-165. [26] PAK Y J, KOIKE A, WATANABE H, et al. Effects of a cyborg-type robot suit HAL on cardiopulmonary burden during exercise in normal subjects [J]. Eur J Appl Physiol, 2019, 119(2): 487-493. [27] WATANABE H, KOIKE A, WU L, et al. Efficacy of cardiac rehabilitation with assistance from hybrid assistive limb in patients with chronic heart failure: protocol for a randomized controlled study [J]. Cardiology, 2019, 142(4): 213-219. [28] AHARON K B, GERSHFELD-LITVIN A, AMIR O, et al. Improving cardiac rehabilitation patient adherence via personalized interventions [J]. PLoS One, 2022, 17(8): e0273815. [29] ZHANG W, ZHANG B, ZHANG H, et al. Analysis of the influence of network continuous care on the quality of life of patients with coronary artery disease (CAD) after PIC [J]. Biomed Res Int, 2022, 2022: 3046554. |
[1] | . [J]. Practical Geriatrics, 2024, 38(10): 979-982. |
[2] | GU Chonghuai, XIANG Xuejun, ZHENG Yuanxi, QIAO Rui, LIN Song. Efficacy of dapagliflozin in elderly patients undergoing coronary intervention with type 2 diabetes mellitus and ejection fraction reduced heart failure [J]. Practical Geriatrics, 2024, 38(10): 1025-1029. |
[3] | LIU Jin, HUANG Yanqiu, ZHU Yi, ZHUO Lili. Effects of sacubitril valsartan sodium in elderly patients with chronic heart failure [J]. Practical Geriatrics, 2024, 38(10): 1030-1033. |
[4] | XU Shouyong, YUAN Yong. Study on feasibility of dual-low-dose CT coronary angiography in elderly patients [J]. Practical Geriatrics, 2024, 38(10): 1054-1058. |
[5] | LIU Lin, WU Qing, ZHANG Jing, MAO Fangying, YU Lu, REN Yiting, FANG Ting. Status and influencing factors of symptom perception in elderly patients with heart failure [J]. Practical Geriatrics, 2024, 38(5): 461-437. |
[6] | LIU Qianhui, YAO Zijun, HE Yuli, XU Yunfan, WU Jun. Effects of HbA1c level on cardiac structure and function in elderly patients with type 2 diabetes mellitus and chronic heart failure [J]. Practical Geriatrics, 2024, 38(5): 491-437. |
[7] | ZHANG Lili, LI Jing, DING Linfeng, SUN Jingxian, CAI Jingbo. Predictive value of carotid atherosclerosis plaque for ischemic stroke events in patients with nonvalvular atrial fibrillation [J]. Practical Geriatrics, 2024, 38(3): 236-239. |
[8] | ZHA Zhimin, LIU Huan, WANG Xiangming, LI Qiushuang, GUO Yan. Effect of cardiac valve calcification on prognosis of elderly patients with coronary heart disease [J]. Practical Geriatrics, 2024, 38(3): 245-250. |
[9] | . [J]. Practical Geriatrics, 2024, 38(3): 308-311. |
[10] | CHENG Qing, XU Yan, CHEN Guofei, DENG Xinyue. Correlation of serum angiotensin Ⅱ and nitric oxide levels with cognitive dysfunction in elderly patients with chronic heart failure [J]. Practical Geriatrics, 2024, 38(2): 132-135. |
[11] | ZHANG Ying, XIE Ling, YE Jiaqi, QIANG Wenhui, YAN Xiaoyun, JIANG Ying, ZHANG Qing. Correlation between laminin and major adverse cardiovascular events in elderly patients with acute myocardial infarction [J]. Practical Geriatrics, 2024, 38(2): 149-151. |
[12] | REN Li-yan. Correlation between serum cholinesterase and ventricular remodeling in elderly patients with heart failure [J]. Practical Geriatrics, 2023, 37(12): 1238-1241. |
[13] | . [J]. Practical Geriatrics, 2023, 37(12): 1270-1273. |
[14] | LU Hao, DENG Hui, WANG Chun, DAI Yang, WANG Qin, WANG Qing. Characteristics of cardiopulmonary function, exercise endurance, and the levels of NT-proBNP and TNT in elderly patients with stable chronic heart failure [J]. Practical Geriatrics, 2023, 37(11): 1138-1142. |
[15] | HU Jing-wen, JIANG Wan-ying, HUO Jun-yu, WANG Lan, WANG Xiao-zhi. Effects of medium/low-dose sacubitril/valsartan on cardiac remodeling and readmission in elderly patients with heart failure with reduced ejection fraction [J]. Practical Geriatrics, 2023, 37(8): 828-833. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|