[1] 中国康复医学会吞咽障碍康复专业委员会. 中国吞咽障碍康复管理指南(2023版)[J]. 中华物理医学与康复杂志, 2023,45(12):1057-1072. [2] 刘雅鑫, 蒋运兰, 黄孝星, 等. 中国老年人吞咽障碍患病率的Meta分析[J]. 中国全科医学, 2023,26(12): 1496-1502, 1512. [3] HUNTER C J, TULUNAY-UGUR O E. Dysphagia in the aging population[J]. Otolaryngol Clin North Am, 2024, 57(4): 685-693. [4] THIYAGALINGAM S, KULINSKI A E, THORSTEINSDOTTIR B,et al. Dysphagia in older adults[J]. Mayo Clin Proc,2021, 96(2):488-497. [5] PATEL D A, KRISHNASWAMI S, STEGER E, et al. Economic and survival burden of dysphagia among inpatients in the United States[J]. Dis Esophagus,2018,31(1):1-7. [6] KAUL V, ENSLIN S, GROSS S A. History of artificial intelligence in medicine[J]. Gastrointest Endosc, 2020, 92(4): 807-812. [7] 邱英鹏, 吴迪, 肖月, 等. 我国人工智能医疗技术定义和分类思考[J]. 医学信息学杂志, 2023, 44(10): 11-15. [8] 陈欣然, 李国正, 崔一迪, 等. 基于专利计量的全球人工智能技术在医疗健康领域应用发展态势分析[J]. 科技管理研究, 2021, 41(3): 139-147. [9] SEJDIC' E, KHALIFA Y, MAHONEY A S, et al. Artificial intelligence and dysphagia: novel solutions to old problems[J]. Arq Gastroenterol, 2020, 57(4): 343-346. [10] AHMED Z, MOHAMED K, ZEESHAN S, et al. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine[J]. Database, 2020, 2020: baaa010. [11] 陈忻睿. 老年肌少性吞咽障碍的危险因素及预测模型研究[D]. 重庆: 重庆医科大学, 2024. [12] LIENHART A M, KRAMER D, JAUK S, et al. Multivariable risk prediction of dysphagia in hospitalized patients using machine learning[J]. Stud Health Technol Inform, 2020, 271: 31-38. [13] JAUK S, KRAMER D, VEERANKI S P K, et al. Evaluation of a machine learning-based dysphagia prediction tool in clinical routine: a prospective observational cohort study[J]. Dysphagia, 2023, 38(4): 1238-1246. [14] GUGATSCHKA M, EGGER N M, HASPL K, et al. Clinical evaluation of a machine learning-based dysphagia risk prediction tool[J]. Eur Arch Otorhinolaryngol, 2024, 281(8): 4379-4384. [15] 韦笠. 基于喉部可穿戴设备的移动吞咽监测系统[D]. 杭州: 浙江大学, 2019. [16] SHIN B, LEE S H, KWON K, et al. Automatic clinical assessment of swallowing behavior and diagnosis of silent aspiration using wireless multimodal wearable electronics[J]. Adv Sci, 2024, 11(34): e2404211. [17] SUZUKI K, SHIMIZU Y, OHSHIMO S, et al. Real-time assessment of swallowing sound using an electronic stethoscope and an artificial intelligence system[J]. Clin Exp Dent Res, 2022, 8(1): 225-230. [18] NAKAMORI M, ISHIKAWA R, WATANABE T, et al. Swallowing sound evaluation using an electronic stethoscope and artificial intelligence analysis for patients with amyotrophic lateral sclerosis[J]. Front Neurol, 2023, 14: 1212024. [19] 姚建武. 基于视频理解的嵌入式吞咽障碍筛查系统的研发[D]. 杭州: 浙江大学, 2024. [20] SAKAI K, GILMOUR S, HOSHINO E, et al. A machine learning-based screening test for sarcopenic dysphagia using image recognition[J]. Nutrients, 2021, 13(11): 4009. [21] SAAB R, BALACHANDAR A, MAHDI H, et al. Machine-learning assisted swallowing assessment: a deep learning-based quality improvement tool to screen for post-stroke dysphagia[J]. Front Neurosci, 2023, 17: 1302132. [22] MARTIN-MARTINEZ A, MIRÓ J, AMADÓ C, et al. A systematic and universal artificial intelligence screening method for oropharyngeal dysphagia: improving diagnosis through risk management[J]. Dysphagia, 2023, 38(4): 1224-1237. [23] 陈捷, 宿翀, 薛勇. 基于RBF神经网络的脑卒中后吞咽障碍智能诊断建模应用研究[J]. 中国医疗设备, 2019, 34(7): 20-23, 33. [24] 中国吞咽障碍康复评估与治疗专家共识组. 中国吞咽障碍评估与治疗专家共识(2017年版)第一部分评估篇[J]. 中华物理医学与康复杂志,2017,39(12):881-892. [25] HEO S, UHM K E, YUK D, et al. Deep learning approach for dysphagia detection by syllable-based speech analysis with daily conversations[J]. Sci Rep, 2024, 14(1): 20270. [26] JEONG C W, LEE C S, LIM D W, et al. The development of an artificial intelligence video analysis-based web application to diagnose oropharyngeal dysphagia: a pilot study[J]. Brain Sci, 2024, 14(6): 546. [27] WIRTH R, DZIEWAS R, BECK A M, et al. Oropharyngeal dysphagia in older persons – from pathophysiology to adequate intervention: a review and summary of an international expert meeting[J]. Clin Interv Aging, 2016, 11: 189-208. [28] 付烁瑾, 董凯生, 高学莉, 等. 脑卒中患者吞咽障碍康复训练虚拟现实系统的设计与接受度评价[J]. 中华现代护理杂志, 2023,29(18):2421-2426. [29] ZHANG B, WONG K P, LIU M, et al. Effect of artificial intelligence-based video-game system on dysphagia in patients with stroke: a randomized controlled trial[J]. Clin Nutr, 2025, 45: 81-90. [30] 陶淘, 姚丽丽, 刘玲. 远程康复技术在吞咽障碍病人康复中应用的研究进展[J]. 护理研究, 2024, 38(20): 3644-3649. [31] COYLE J L, SEJDIC' E. High-resolution cervical auscultation and data science: new tools to address an old problem[J]. Am J Speech Lang Pathol, 2020, 29(2S): 992-1000. [32] 阮依涵, 王巍, 孟小虎, 等. 人工智能技术在国际医疗领域的应用与启示[J]. 医学信息学杂志, 2024, 45(8): 41-44. [33] ORLOVA I A, AKOPYAN Z A, PLISYUK A G, et al. Opinion research among Russian physicians on the application of technologies using artificial intelligence in the field of medicine and health care[J]. BMC Health Serv Res, 2023, 23(1): 749. [34] SINGAREDDY S, SN V P, JARAMILLO A P, et al. Artificial intelligence and its role in the management of chronic medical conditions: a systematic review[J]. Cureus, 2023, 15(9): e46066. [35] 王楠, 崔翔, 陈骅, 等. 人工智能在医疗健康领域中的应用难题浅析[J]. 中国急救复苏与灾害医学杂志, 2019, 14(11): 1064-1067. [36] PRAKASH S, BALAJI J N, JOSHI A, et al. Ethical conundrums in the application of artificial intelligence (AI) in healthcare-a scoping review of reviews[J]. J Pers Med, 2022, 12(11): 1914. |