[1] 曹伯旭, 林夏清, 吴莹, 等. 慢性疼痛分类目录和定义[J]. 中国疼痛医学杂志, 2021, 27(1): 2-8. [2] WANG V C, MULLALLY W J. Pain Neurology[J]. Am J Med, 2020, 133(3): 273-280. [3] KAUSHIK A S, STRATH L J, SORGE R E. Dietary interventions for treatment of chronic pain: oxidative stress and inflammation[J]. Pain Ther, 2020, 9(2): 487-498. [4] SINGH S P, GUINDON J, MODY P H, et al. Pain and aging: a unique challenge in neuroinflammation and behavior[J]. Mol Pain, 2023, 19: 17448069231203090. [5] WILLEMEN H L D M, SANTOS RIBEIRO P S, BROEKS M, et al. Inflammation-induced mitochondrial and metabolic disturbances in sensory neurons control the switch from acute to chronic pain[J]. Cell Rep Med, 2023, 4(11): 101265. [6] 谢泽敏, 徐世霞, 徐宁, 等. 神经病理性疼痛致抑郁大鼠海马促炎细胞因子含量的变化[J]. 临床麻醉学杂志, 2017, 33(8): 797-800. [7] XIONG H Y, ZHANG Z J, WANG X Q. Bibliometric analysis of research on the comorbidity of pain and inflammation[J]. Pain Res Manag, 2021, 2021: 6655211. [8] VERGNE-SALLE P, BERTIN P. Chronic pain and neuroinflammation[J]. Joint Bone Spine, 2021, 88(6): 105222. [9] TROUVIN A P, PERROT S. New concepts of pain[J]. Best Pract Res Clin Rheumatol, 2019, 33(3): 101415. [10] LI X, ZHANG C, TAO H, et al. Dexmedetomidine alleviates osteoarthritis inflammation and pain through the CB2 pathway in rats[J]. Int Immunopharmacol, 2023, 119: 110134. [11] FALSETTA M L, MADDIPATI K R, HONN K V. Inflammation, lipids, and pain in vulvar disease[J]. Pharmacol Ther, 2023, 248: 108467. [12] MATRE D, CHRISTENSEN J O, MORK P J, et al. Shift work, inflammation and musculoskeletal pain-The HUNT Study[J]. Occup Med: Lond, 2021, 71(9): 422-427. [13] FELIX E R, GATER D R Jr. Interrelationship of neurogenic obesity and chronic neuropathic pain in persons with spinal cord injury[J]. Top Spinal Cord Inj Rehabil, 2021, 27(1): 75-83. [14] SEIFERT O, BAERWALD C. Interaction of pain and chronic inflammation[J]. Z Rheumatol, 2021, 80(3): 205-213. [15] FANG X X, ZHAI M N, ZHU M, et al. Inflammation in pathogenesis of chronic pain: foe and friend[J]. Mol Pain, 2023, 19: 17448069231178176. [16] JIANG W, ZHANG L X, TAN X Y, et al. Inflammation and histone modification in chronic pain[J]. Front Immunol, 2022, 13: 1087648. [17] SOMMER C, LEINDERS M, ÜÇEYLER N. Inflammation in the pathophysiology of neuropathic pain[J]. Pain, 2018, 159(3): 595-602. [18] WATKINS L R, MILLIGAN E D, MAIER S F. Glial activation: a driving force for pathological pain[J]. Trends Neurosci, 2001, 24(8): 450-455. [19] VAN DER VLIST M, RAOOF R, WILLEMEN H L D M, et al. Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain[J]. Neuron, 2022, 110(4): 613-626. e9. [20] SILVA SANTOS RIBEIRO P, WILLEMEN H L D M, VERSTEEG S, et al. NLRP3 inflammasome activation in sensory neurons promotes chronic inflammatory and osteoarthritis pain[J]. Immunother Adv, 2023, 3(1): ltad022. [21] STEGEN M, FREY U H. The role of G protein-coupled receptor kinase 6 regulation in inflammation and pain[J]. Int J Mol Sci, 2022, 23(24): 15880. [22] PARISIEN M, LIMA L V, DAGOSTINO C, et al. Acute inflammatory response via neutrophil activation protects against the development of chronic pain[J]. Sci Transl Med, 2022, 14(644): eabj9954. [23] LOGGIA M L, CHONDE D B, AKEJU O, et al. Evidence for brain glial activation in chronic pain patients[J]. Brain, 2015, 138(Pt 3): 604-615. [24] JI R R, NACKLEY A, HUH Y, et al. Neuroinflammation and central sensitization in chronic and widespread pain[J]. Anesthesiology, 2018, 129(2): 343-366. [25] SINGH A, Khushi, TIWARI V, et al. Microparticles mediate lipopolysaccharide-induced inflammation and chronic pain in mouse model[J]. Neuromolecular Med, 2024, 26(1): 48. [26] ASGAR J, ZHANG Y, SALOMAN J L, et al. The role of TRPA1 in muscle pain and mechanical hypersensitivity under inflammatory conditions in rats[J]. Neuroscience, 2015, 310: 206-215. [27] ZAPPIA K J, O’HARA C L, MOEHRING F, et al. Sensory neuron-specific deletion of TRPA1 results in mechanical cutaneous sensory deficits[J]. eNeuro, 2017, 4(1): ENEURO. 0069-16. 2017. [28] ECHEVERRIA-VILLALOBOS M, TORTORICI V, BRITO B E, et al. The role of neuroinflammation in the transition of acute to chronic pain and the opioid-induced hyperalgesia and tolerance[J]. Front Pharmacol, 2023, 14: 1297931. [29] VYGONSKAYA M, WU Y, PRICE T J, et al. The role and treatment potential of the complement pathway in chronic pain[J]. J Pain, 2025, 27: 104689. [30] UDDIN S J, HASAN M F, AFROZ M, et al. Curcumin and its multi-target function against pain and inflammation: an update of pre-clinical data[J]. Curr Drug Targets, 2021, 22(6): 656-671. [31] HONE A J, MICHAEL MCINTOSH J. Nicotinic acetylcholine receptors: therapeutic targets for novel ligands to treat pain and inflammation[J]. Pharmacol Res, 2023, 190: 106715. [32] ERGÜL A G, JORDAN P M, DAHLKE P, et al. Novel benzimidazole derivatives as potent inhibitors of microsomal prostaglandin E2 synthase 1 for the potential treatment of inflammation, pain, and fever[J]. J Med Chem, 2024, 67(23): 21143-21162. [33] LI M X, WEI Q Q, LU H J. Progress on the elucidation of the antinociceptive effect of ginseng and ginsenosides in chronic pain[J]. Front Pharmacol, 2022, 13: 821940. [34] GONZÁLEZ-MUÑOZ A, CUEVAS-CERVERA M, PÉREZ-MONTILLA J J, et al. Efficacy of photobiomodulation therapy in the treatment of pain and inflammation: a literature review[J]. Healthcare, 2023, 11(7): 938. [35] MANSKE S. The microbiome’s role in chronic pain and inflammation[J]. Integr Med: Encinitas, 2024, 23(4): 10-15. |