[1] DENT E, WRIGHT O R L, WOO J, et al. Malnutrition in older adults[J]. Lancet, 2023, 401(10380):951-966. [2] BROWNIE S. Why are elderly individuals at risk of nutritional deficiency?[J]. Int J Nurs Pract, 2006, 12(2):110-118. [3] WEI J M, LI S, CLAYTOR L, et al. Prevalence and predictors of malnutrition in elderly Chinese adults: results from the China Health and Retirement Longitudinal Study [J]. Public Health Nutr, 2018, 21(17):3129-3134. [4] 宋扬, 王盛书, 王建伟, 等. 中国社区老年人群营养不良患病率Meta分析[J]. 中华流行病学杂志, 2022, 43(6):915-921. [5] 崔红元, 朱明炜, 陈伟, 等. 中国老年住院患者营养状态的多中心调查研究[J]. 中华老年医学杂志, 2021, 40(3):364-369. [6] SAK J, SUCHODOLSKA M. Artificial intelligence in nutrients science research: a review[J]. Nutrients, 2021, 13(2):322. [7] HAUG C J, DRAZEN J M. Artificial intelligence and machine learning in clinical medicine, 2023[J]. N Engl J Med, 2023, 388(13):1201-1208. [8] BINI S A. Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care?[J]. J Arthroplasty, 2018, 33(8):2358-2361. [9] VERMA M, HONTECILLAS R, TUBAU-JUNI N, et al. Challenges in personalized nutrition and health [J]. Front Nutr, 2018, 5:117. [10] SABERI-KARIMIAN M, KHORASANCHI Z, GHAZIZADEH H, et al. Potential value and impact of data mining and machine learning in clinical diagnostics[J]. Crit Rev Clin Lab Sci, 2021, 58(4):275-296. [11] PAPATHANAIL I, BRÜHLMANN J, VASILOGLOU M F, et al. Evaluation of a novel artificial intelligence system to monitor and assess energy and macronutrient intake in hospitalised older patients[J]. Nutrients, 2021, 13(12):4539. [12] PAPATHANAIL I, ABDUR RAHMAN L, BRIGATO L, et al. The nutritional content of meal images in free-living conditions-automatic assessment with goFOOD(TM)[J]. Nutrients, 2023, 15(17):3835. [13] SALINARI A, MACHÌ M, ARMAS DIAZ Y, et al. The application of digital technologies and artificial intelligence in healthcare: an overview on nutrition assessment[J]. Diseases, 2023, 11(3):97. [14] SHARMA V, SHARMA V, KHAN A, et al. Malnutrition, health and the role of machine learning in clinical setting[J]. Front Nutr, 2020, 7:44. [15] 高静, 杨雪, 李龙心, 等. 全球领导人营养不良倡议(GLIM)标准在老年人群营养不良诊断中的应用[J]. 实用老年医学, 2023, 37(3):295-299. [16] REN S S, ZHU M W, ZHANG K W, et al. Machine learning-based prediction of in-hospital complications in elderly patients using GLIM-, SGA-, and ESPEN 2015-diagnosed malnutrition as a factor[J]. Nutrients, 2022, 14(15):3035. [17] YIN L, LIN X, LIU J, et al. Classification tree-based machine learning to visualize and validate a decision tool for identifying malnutrition in cancer patients[J]. JPEN J Parenter Enteral Nutr, 2021, 45(8):1736-1748. [18] TIMSINA P, JOSHI H N, CHENG F Y, et al. MUST-Plus: a machine learning classifier that improves malnutrition screening in acute care facilities[J]. J Am Coll Nutr, 2021, 40(1):3-12. [19] BESCULIDES M, MAZUMDAR M, PHLEGAR S, et al. Implementing a machine learning screening tool for malnutrition: insights from qualitative research applicable to other machine learning-based clinical decision support systems[J]. JMIR Form Res, 2023, 7:e42262. [20] HOUSE M, GWALTNEY C. Malnutrition screening and diagnosis tools: implications for practice[J]. Nutr Clin Pract, 2022, 37(1):12-22. [21] REN S S, ZHANG K W, CHEN B W, et al. Machine learning-based prediction of complications and prolonged hospitalization with the GLIM criteria combinations containing calf circumference in elderly Asian patients[J]. Nutrients, 2023, 15(19):4146. [22] WANG J, HE C, LONG Z. Establishing a machine learning model for predicting nutritional risk through facial feature recognition[J]. Front Nutr, 2023, 10:1219193. [23] JIN B T, CHOI M H, MOYER M F, et al. Predicting malnutrition from longitudinal patient trajectories with deep learning[J]. PLoS One, 2022, 17(7):e0271487. [24] LARBURU N, ARTOLA G, KEREXETA J, et al. Key factors and ai-based risk prediction of malnutrition in hospitalized older women[J]. Geriatrics: Basel, 2022, 7(5):105. [25] ZULFIQAR A A, LORENZO-VILLALBA N, ZULFIQAR O A, et al. e-Health: a future solution for optimized management of elderly patients. GER-e-TECTM project[J]. Medicines: Basel, 2020, 7(8):41. [26] TAY W, QUEK R, KAUR B, et al. Use of facial morphology to determine nutritional status in older adults: opportunities and challenges[J]. JMIR Public Health Surveill, 2022, 8(7):e33478. [27] ZULFIQAR A A, VAUDELLE O, HAJJAM M, et al. Results of the "GER-e-TEC" experiment involving the use of an automated platform to detect the exacerbation of geriatric syndromes[J]. J Clin Med, 2020, 9(12):3836. [28] CHEN G, JIA W, ZHAO Y, et al. Food/non-food classification of real-life egocentric images in low- and middle-income countries based on image tagging features[J]. Front Artif Intell, 2021, 4:644712. [29] IRSHAD M T, NISAR M A, HUANG X, et al. SenseHunger: machine learning approach to hunger detection using wearable sensors[J]. Sensors: Basel, 2022, 22(20):7711. [30] BRAGA B C, ARRIETA A, BANNERMAN B, et al. Measuring adherence, acceptability and likability of an artificial-intelligence-based, gamified phone application to improve the quality of dietary choices of adolescents in Ghana and Vietnam: protocol of a randomized controlled pilot test[J]. Front Digit Health, 2022, 4:961604. [31] LU Y, STATHOPOULOU T, VASILOGLOU M F, et al. goFOOD(TM): an artificial intelligence system for dietary assessment[J]. Sensors: Basel, 2020, 20(15):4283. [32] NOORBAKHSH-SABET N, ZAND R, ZHANG Y, et al. Artificial intelligence transforms the future of health care[J]. Am J Med, 2019, 132(7):795-801. [33] VERMA M, BASSAGANYA-RIERA J, LEBER A, et al. High-resolution computational modeling of immune responses in the gut[J]. Gigascience, 2019, 8(6):giz062. [34] FORSTER H, WALSH M C, O'DONOVAN C B, et al. A dietary feedback system for the delivery of consistent personalized dietary advice in the web-based multicenter Food4Me study[J]. J Med Internet Res, 2016, 18(6):e150. [35] SÉBÉDIO J L. Metabolomics, nutrition, and potential biomarkers of food quality, intake, and health status[J]. Adv Food Nutr Res, 2017, 82:83-116. [36] HOLLAND N. Future of environmental research in the age of epigenomics and exposomics[J]. Rev Environ Health, 2017, 32(1/2):45-54. [37] KHAN U. Revolutionizing personalized protein energy malnutrition treatment: harnessing the power of Chat GPT[J]. Ann Biomed Eng, 2023. DOI:10.1007/s10439-023-03331-w. |