[1] NITA M, GRZYBOWSKI A. Antioxidative role of heterophagy, autophagy, and mitophagy in the retina and their association with the age-related macular degeneration (AMD) etiopathogenesis[J]. Antioxidants: Basel, 2023, 12(7): 1368. [2] 陈彬彬, 楼丽霞, 叶娟. 中国眼病疾病负担现状及三十年变化趋势[J]. 浙江大学学报(医学版), 2021, 50(4): 420-428. [3] AMINI M A, KARBASI A, VAHABIRAD M, et al. Mechanistic insight into age-related macular degeneration (AMD): anatomy, epidemiology, genetics, pathogenesis, prevention, implications, and treatment strategies to pace AMD management[J]. Chonnam Med J, 2023, 59(3): 143-159. [4] Five-year follow-up of fellow eyes of patients with age-related macular degeneration and unilateral extrafoveal choroidal neovascularization. Macular Photocoagulation Study Group[J]. Arch Ophthalmol, 1993, 111(9): 1189-1199. [5] AMOAKU W M, CHAKRAVARTHY U, GALE R, et al. Defining response to anti-VEGF therapies in neovascular AMD[J]. Eye: Lond, 2015, 29(6): 721-731. [6] SHIRLEY M. Faricimab: first approval[J]. Drugs, 2022, 82(7): 825-830. [7] PENHA F M, MASUD M, KHANANI Z A, et al. Review of real-world evidence of dual inhibition of VEGF-A and ANG-2 with faricimab in NAMD and DME[J]. Int J Retina Vitreous, 2024, 10(1): 5. [8] LI P, FAN H. Pericyte loss in diseases[J]. Cells, 2023, 12(15): 1931. [9] TRIMM E, RED-HORSE K. Vascular endothelial cell development and diversity[J]. Nat Rev Cardiol, 2023, 20(3): 197-210. [10] NGUYEN Q D, HEIER J S, DO D V, et al. The Tie2 signaling pathway in retinal vascular diseases: a novel therapeutic target in the eye[J]. Int J Retina Vitreous, 2020, 6: 48. [11] LIBERSKI S, WICHROWSKA M, KOCIE, CKI J. Aflibercept versus faricimab in the treatment of neovascular age-related macular degeneration and diabetic macular edema: a review[J]. Int J Mol Sci, 2022, 23(16): 9424. [12] INOUE M, ARAKAWA A, YAMANE S, et al. Variable response of vascularized pigment epithelial detachments to ranibizumab based on lesion subtypes, including polypoidal choroidal vasculopathy[J]. Retina, 2013, 33(5): 990-997. [13] SHEN Y, XU M, REN L, et al. A novel retinoic acid drug, EYE-502, inhibits choroidal neovascularization by targeting endothelial cells and pericytes[J]. Sci Rep, 2023, 13(1): 10439. [14] HUANG H. Pericyte-endothelial interactions in the retinal microvasculature[J]. Int J Mol Sci, 2020, 21(19): 7413. [15] KHAN M, AZIZ A A, SHAFI N A, et al. Targeting angiopoietin in retinal vascular diseases: a literature review and summary of clinical trials involving faricimab[J]. Cells, 2020, 9(8): 1869. [16] NICOLÒ M, FERRO DESIDERI L, VAGGE A, et al. Faricimab: an investigational agent targeting the Tie-2/angiopoietin pathway and VEGF-A for the treatment of retinal diseases[J]. Expert OpinInvestig Drugs, 2021, 30(3): 193-200. [17] TAKAHASHI K, CHEUNG C M G, IIDA T, et al. Efficacy, durability, and safety of faricimab in patients from Asian countries with neovascular age-related macular degeneration: 1-year subgroup analysis of the TENAYA and LUCERNE trials[J]. Graefes Arch Clin Exp Ophthalmol, 2023, 261(11): 3125-3137. [18] ALDHANHANI A A, AZZAM O A, ALALI S H, et al. Switch to faricimab after initial treatment with aflibercept in eyes with neovascular age-related macular degeneration[J]. Int Ophthalmol, 2024, 44(1): 369. [19] NG B, KOLLI H, AJITH KUMAR N, et al. Real-world data on faricimab switching in treatment-refractory neovascular age-related macular degeneration[J]. Life: Basel, 2024, 14(2): 193. [20] CHEUNG C M G, LIM J I, PRIGLINGER S, et al. Anatomic outcomes with faricimab vs aflibercept in head-to-head dosing phase of the TENAYA/LUCERNE trials in neovascular age-related macular degeneration[J]. Ophthalmology, 2025, 132(5): 519-526. [21] KIM J H, KIM J Y, LEE D W, et al. Fibrovascular pigment epithelial detachment in eyes with subretinal hemorrhage secondary to neovascular AMD or PCV: a morphologic predictor associated with poor treatment outcomes[J]. Sci Rep, 2020, 10(1): 14943. [22] PEPPLE K, MRUTHYUNJAYA P. Retinal pigment epithelial detachments in age-related macular degeneration: classification and therapeutic options[J]. Semin Ophthalmol, 2011, 26(3): 198-208. [23] KARAMPELAS M, MALAMOS P, PETROU P, et al. Retinal pigment epithelial detachment in age-related macular degeneration[J]. Ophthalmol Ther, 2020, 9(4): 739-756. [24] SHIJO T, SAKURADA Y, TANAKA K, et al. Incidence and risk of advanced age-related macular degeneration in eyes with drusenoid pigment epithelial detachment[J]. Sci Rep, 2022, 12(1): 4715. [25] MINNELLA A M, CENTINI C, GAMBINI G, et al. Choroidal thickness changes after intravitreal aflibercept injections in treatment-Naïve neovascular AMD[J]. Adv Ther, 2022, 39(7): 3248-3261. [26] ARNOULD L, GUENANCIA C, BINQUET C, et al. Retinal vascular network: changes with aging and systemic vascular disease (cardiac and cerebral)[J]. J Fr Ophtalmol, 2022, 45(1): 104-118. [27] PRZEZAK A, BIELKA W, PAWLIK A. Hypertension and type 2 diabetes-the novel treatment possibilities[J]. Int J Mol Sci, 2022, 23(12): 6500. [28] HYMAN L, SCHACHAT A P, HE Q, et al. Hypertension, cardiovascular disease, and age-related macular degeneration. Age-Related Macular Degeneration Risk Factors Study Group[J]. Arch Ophthalmol, 2000, 118(3): 351-358. [29] KATELAN S, OREKOVIĆ I, BIĆAN F, et al. Inflammatory and angiogenic biomarkers in diabetic retinopathy[J]. Biochem Med: Zagreb, 2020, 30(3): 030502. [30] REDDY S K, DEVI V, SEETHARAMAN A T M, et al. Cell and molecular targeted therapies for diabetic retinopathy[J]. Front Endocrinol: Lausanne, 2024, 15: 1416668. [31] HIRSCHI K K, D’AMORE P A. Pericytes in the microvasculature[J]. Cardiovasc Res, 1996, 32(4): 687-698. [32] FERRO DESIDERI L, TRAVERSO C E, NICOLÒ M, et al. Faricimab for the treatment of diabetic macular edema and neovascular age-related macular degeneration[J]. Pharmaceutics, 2023, 15(5): 1413. [33] PANOS G D, LAKSHMANAN A, DADOUKIS P, et al. Faricimab: transforming the future of macular diseases treatment-a comprehensive review of clinical studies[J]. Drug Des Devel Ther, 2023, 17: 2861-2873. |