[1] KORCZYN A D, GRINBERG L T. Is Alzheimer disease a disease?[J]. Nat Rev Neurol, 2024, 20(4): 245-251 [2] 2024 Alzheimer’s disease facts and figures[J]. Alzheimers Dement, 2024, 20(5): 3708-3821. [3] WANG T, LI M, ZENG T, et al. Association between insulin resistance and cardiovascular disease risk varies according to glucose tolerance status: a nationwide prospective cohort study[J]. Diabetes Care, 2022, 45(8): 1863-1872. [4] BAGLIETTO-VARGAS D, SHI J, YAEGER D M, et al. Diabetes and Alzheimer’s disease crosstalk[J]. Neurosci Biobehav Rev, 2016, 64: 272-287. [5] ROSTAGNO A A. Pathogenesis of Alzheimer’s disease[J]. Int J Mol Sci, 2022, 24(1): 107. [6] 韩梦, 焦婧然, 孟桐, 等. 尿酸与阿尔兹海默症相关蛋白的关系研究进展[J]. 河北医学, 2023, 29(4): 690-693. [7] FRISONI G B, ALTOMARE D, THAL D R, et al. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised[J]. Nat Rev Neurosci, 2022, 23(1): 53-66. [8] DEWANJEE S, CHAKRABORTY P, BHATTACHARYA H, et al. Altered glucose metabolism in Alzheimer’s disease: role of mitochondrial dysfunction and oxidative stress[J]. Free Radic Biol Med, 2022, 193(Pt 1): 134-157. [9] JANELIDZE S, TEUNISSEN C E, ZETTERBERG H, et al. Head-to-head comparison of 8 plasma amyloid-β 42/40 assays in Alzheimer disease[J]. JAMA Neurol, 2021, 78(11): 1375-1382. [10] KARRAN E, DE STROOPER B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics[J]. Nat Rev Drug Discov, 2022, 21(4): 306-318. [11] LEE J H, YANG D S, GOULBOURNE C N, et al. Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques[J]. Nat Neurosci, 2022, 25(6): 688-701. [12] ALALI S, RIAZI G, ASHRAFI-KOOSHK M R, et al. Cannabidiol inhibits tau aggregation in vitro[J]. Cells, 2021, 10(12): 3521. [13] WUESTEFELD A, PICHET BINETTE A, BERRON D, et al. Age-related and amyloid-beta-independent tau deposition and its downstream effects[J]. Brain, 2023, 146(8): 3192-3205. [14] LIU P, WANG Z H, KANG S S, et al. High-fat diet-induced diabetes couples to Alzheimer’s disease through inflammation-activated C/EBPβ/AEP pathway[J]. Mol Psychiatry, 2022, 27(8): 3396-3409. [15] ZHENG X, LIN W, JIANG Y, et al. Electroacupuncture ameliorates beta-amyloid pathology and cognitive impairment in Alzheimer disease via a novel mechanism involving activation of TFEB (transcription factor EB)[J]. Autophagy, 2021, 17(11): 3833-3847. [16] 李明成, 周君, 胡韵韵, 等. 黑逍遥散调控NOX2/ROS/NF-κB信号通路干预AD模型小鼠小胶质细胞极化[J]. 中国中药杂志, 2023, 48(15): 4027-4038. [17] VALIUKAS Z, TANGALAKIS K, APOSTOLOPOULOS V, et al. Microglial activation states and their implications for Alzheimer’s disease[J]. J Prev Alzheimers Dis, 2025, 12(1): 100013. [18] MARY A, MANCUSO R, HENEKA M T. Immune activation in Alzheimer disease[J]. Annu Rev Immunol, 2024, 42(1): 585-613. [19] CHUN H, IM H, KANG Y J, et al. Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer’s disease via H2O-2 production[J]. Nat Neurosci, 2020, 23(12): 1555-1566. [20] MINHAS P S, JONES J R, LATIF-HERNANDEZ A, et al. Restoring hippocampal glucose metabolism rescues cognition across Alzheimer’s disease pathologies[J]. Science, 2024, 385(6711): eabm6131. [21] HOU L, MA J, FENG X, et al. Caffeic acid and diabetic neuropathy: investigating protective effects and insulin-like growth factor 1 (IGF-1)-related antioxidative and anti-inflammatory mechanisms in mice[J]. Heliyon, 2024, 10(12): e32623. [22] PENG W, TAN C, MO L, et al. Glucose transporter 3 in neuronal glucose metabolism: health and diseases[J]. Metabolism, 2021, 123: 154869. [23] LIN S, CHEN C, OUYANG P, et al. SELENOM knockout induces synaptic deficits and cognitive dysfunction by influencing brain glucose metabolism[J]. J Agric Food Chem, 2023, 71(3): 1607-1619. [24] LIU Q, WANG Z, CAO J, et al. The role of insulin signaling in hippocampal-related diseases: a focus on Alzheimer’s disease[J]. Int J Mol Sci, 2022, 23(22): 14417. [25] BIESSELS G J, REAGAN L P. Hippocampal insulin resistance and cognitive dysfunction[J]. Nat Rev Neurosci, 2015, 16(11): 660-671. [26] YANG C, ZHANG H, MA Z, et al. Structural and functional alterations of the hippocampal subfields in T2DM with mild cognitive impairment and insulin resistance: a prospective study[J]. J Diabetes, 2024, 16(11): e70029. [27] ALVES S S, SERVILHA-MENEZES G, ROSSI L, et al. Evidence of disturbed insulin signaling in animal models of Alzheimer’s disease[J]. Neurosci Biobehav Rev, 2023, 152: 105326. [28] SPINELLI M, FUSCO S, GRASSI C. Brain insulin resistance and hippocampal plasticity: mechanisms and biomarkers of cognitive decline[J]. Front Neurosci, 2019, 13: 788. [29] YONAMINE C Y, MICHALANI M L E, MOREIRA R J, et al. Glucose transport and utilization in the hippocampus: from neurophysiology to diabetes-related development of dementia[J]. Int J Mol Sci, 2023, 24(22): 16480. [30] FAN L W, CARTER K, BHATT A, et al. Rapid transport of insulin to the brain following intranasal administration in rats[J]. Neural Regen Res, 2019, 14(6): 1046-1051. [31] XU J, NI B, MA C, et al. Docosahexaenoic acid enhances hippocampal insulin sensitivity to promote cognitive function of aged rats on a high-fat diet[J]. J Adv Res, 2023, 45: 31-42. [32] GUO X, LEI M, ZHAO J, et al. Tirzepatide ameliorates spatial learning and memory impairment through modulation of aberrant insulin resistance and inflammation response in diabetic rats[J]. Front Pharmacol, 2023, 14: 1146960. [33] ZHANG H, LIANG J L, WU Q Y, et al. Swimming suppresses cognitive decline of HFD-induced obese mice through reversing hippocampal inflammation, insulin resistance, and BDNF level[J]. Nutrients, 2022, 14(12): 2432. [34] AGRAWAL R, RENO C M, SHARMA S, et al. Insulin action in the brain regulates both central and peripheral functions[J]. Am J Physiol Endocrinol Metab, 2021, 321(1): E156-E163. [35] GUO H, XIN Y, WANG S, et al. Hypothalamic POMC neuron-specific knockout of MC4R affects insulin sensitivity by regulating Kir2.1[J]. Mol Med, 2024, 30(1): 34. [36] DRAGANO N R V, MILBANK E, HADDAD-TÓVOLLI R, et al. Hypothalamic free fatty acid receptor-1 regulates whole-body energy balance[J]. Mol Metab, 2024, 79: 101840. [37] SHU Q, CHEN L, WU S, et al. Acupuncture targeting SIRT1 in the hypothalamic arcuate nucleus can improve obesity in high-fat-diet-induced rats with insulin resistance via an anorectic effect[J]. Obes Facts, 2020, 13(1): 40-57. [38] SEWAYBRICKER L E, HUANG A, CHANDRASEKARAN S, et al. The significance of hypothalamic inflammation and gliosis for the pathogenesis of obesity in humans[J]. Endocr Rev, 2023, 44(2): 281-296. [39] JIANG L, SU H, WU X, et al. Leptin receptor-expressing neuron Sh2b1 supports sympathetic nervous system and protects against obesity and metabolic disease[J]. Nat Commun, 2020, 11(1): 1517. [40] GOLDSMITH D R, BEKHBAT M, LE N A, et al. Protein and gene markers of metabolic dysfunction and inflammation together associate with functional connectivity in reward and motor circuits in depression[J]. Brain Behav Immun, 2020, 88: 193-202. [41] LESIEWSKA N, BORKOWSKA A, JUNIK R, et al. Consequences of diabetes and pre-diabetes and the role of biochemical parameters of carbohydrate metabolism for the functioning of the prefrontal cortex in obese patients[J]. Front Biosci:Landmark Ed, 2022, 27(3): 76. [42] LIN Y S, LIU C K, LEE H C, et al. Electronegative very-low-density lipoprotein induces brain inflammation and cognitive dysfunction in mice[J]. Sci Rep, 2021, 11(1): 6013. [43] WAN L, AI J Q, YANG C, et al. Expression of the excitatory postsynaptic scaffolding protein, Shank3, in human brain: effect of age and Alzheimer’s disease[J]. Front Aging Neurosci, 2021, 13: 717263. [44] MANSUR R B, DELGADO-PERAZA F, SUBRAMANIAPILLAI M, et al. Exploring brain insulin resistance in adults with bipolar depression using extracellular vesicles of neuronal origin[J]. J Psychiatr Res, 2021, 133: 82-92. [45] ERTAS B, HAZAR-YAVUZ A N, TOPAL F, et al. Rosa canina L. improves learning and memory-associated cognitive impairment by regulating glucose levels and reducing hippocampal insulin resistance in high-fat diet/streptozotocin-induced diabetic rats[J]. J Ethnopharmacol, 2023, 313: 116541. [46] LEE B, INES I, JE J, et al. Effect of renal ischemia reperfusion on brain neuroinflammation[J]. Biomedicines, 2022, 10(11): 2993. [47] IGNJATOVIĆ Đ, TOVILOVIĆ-KOVAČEVIĆ G, MIĆIĆ B, et al. Effects of early life overnutrition and hyperandrogenism on spatial learning and memory in a rat model of polycystic ovary syndrome[J]. Horm Behav, 2023, 153: 105392. [48] BI T, ZHAN L, ZHOU W, et al. Effect of the ZiBuPiYin recipe on diabetes-associated cognitive decline in zucker diabetic fatty rats after chronic psychological stress[J]. Front Psychiatry, 2020, 11: 272. [49] PUENGPAN S, PHETRUNGNAPHA A, SATTAYAKAWEE S, et al. Phycocyanin attenuates skeletal muscle damage and fatigue via modulation of Nrf2 and IRS-1/AKT/mTOR pathway in exercise-induced oxidative stress in rats[J]. PLoS One, 2024, 19(9): e0310138. [50] NIJSSEN K M R, MENSINK R P, JORIS P J. Effects of intranasal insulin administration on cerebral blood flow and cognitive performance in adults: a systematic review of randomized, placebo-controlled intervention studies[J]. Neuroendocrinology, 2023, 113(1): 1-13. [51] MCGUIRE D K, BUSUI R P, DEANFIELD J, et al. Effects of oral semaglutide on cardiovascular outcomes in individuals with type 2 diabetes and established atherosclerotic cardiovascular disease and/or chronic kidney disease: design and baseline characteristics of SOUL, a randomized trial[J]. Diabetes Obes Metab, 2023, 25(7): 1932-1941. [52] NOWELL J, BLUNT E, GUPTA D, et al. Antidiabetic agents as a novel treatment for Alzheimer’s and Parkinson’s disease[J]. Ageing Res Rev, 2023, 89: 101979. [53] YU B, ZHANG Q, LIN L, et al. Molecular and cellular evolution of the amygdala across species analyzed by single-nucleus transcriptome profiling[J]. Cell Discov, 2023, 9(1): 19. [54] SONG J. Amygdala activity and amygdala-hippocampus connectivity: metabolic diseases, dementia, and neuropsychiatric issues[J]. Biomed Pharmacother, 2023, 162: 114647. [55] MU J L, LIU X D, DONG Y H, et al. Peripheral interleukin-6-associated microglial QUIN elevation in basolateral amygdala contributed to cognitive dysfunction in a mouse model of postoperative delirium[J]. Front Med: Lausanne, 2022, 9: 998397. [56] 李欣, 张雯, 刘佳妮, 等. 糖尿病前期及2型糖尿病皮层萎缩与认知功能的相关性研究[J]. 磁共振成像, 2024, 15(4): 9-14, 19. [57] 柳瑞芳, 黄刚, 田静, 等. 2型糖尿病共病抑郁患者静息态脑功能局部一致性[J]. 中国医学影像技术, 2022, 38(4): 506-510. [58] 谢昊. 纹状体-前额叶通路介导2型糖尿病认知损伤的fMRI研究[D]. 西安: 中国人民解放军空军军医大学, 2024. [59] SUN X Y, LIU L, SONG Y T, et al. Two parallel medial prefrontal cortex-amygdala pathways mediate memory deficits via glutamatergic projection in surgery mice[J]. Cell Rep, 2023, 42(7): 112719. |