实用老年医学 ›› 2024, Vol. 38 ›› Issue (9): 948-952.doi: 10.3969/j.issn.1003-9198.2024.09.020
包良良, 董靖德
收稿日期:
2023-11-26
出版日期:
2024-09-20
发布日期:
2024-10-23
通讯作者:
董靖德,Email:dongjingde1978@126.com
Received:
2023-11-26
Online:
2024-09-20
Published:
2024-10-23
摘要: AD是一种不可逆的进行性神经变性疾病,其临床特征是认知功能持续下降、日常生活能力丧失和逐渐恶化的精神行为异常。阻塞性睡眠呼吸暂停(obstructive sleep apnea, OSA)作为AD的独立危险因素,对AD的进展起到重要作用。本文通过综述OSA在AD发生发展过程中的影响及潜在机制,旨在为AD治疗提供新视野。
中图分类号:
包良良, 董靖德. 阻塞性睡眠呼吸暂停与阿尔茨海默病的研究进展[J]. 实用老年医学, 2024, 38(9): 948-952.
[1] 中华医学会, 中华医学会杂志社, 中华医学会全科医学分会. 成人阻塞性睡眠呼吸暂停基层诊疗指南(2018年)[J]. 中华全科医师杂志, 2019,18(1):21-29. [2] KUO C Y, HSIAO H T, LO I H, et al. Association between obstructive sleep apnea, its treatment, and Alzheimer’s disease: systematic mini-review[J]. Front Aging Neurosci, 2021,12:591737. [3] 中华医学会神经病学分会痴呆与认知障碍学组. 阿尔茨海默病源性轻度认知障碍诊疗中国专家共识2021[J]. 中华神经科杂志, 2022,55(5):421-440. [4] JONGSIRIYANYONG S, LIMPAWATTANA P. Mild cognitive impairment in clinical practice: a review article[J]. Am J Alzheimers Dis Other Demen, 2018,33(8):500-507. [5] CIPRIANI G, LUCETTI C, DANTI S, et al. Sleep disturbances and dementia[J]. Psychogeriatrics, 2014,15(1):65-74. [6] CHENG J X, REN J, QIU J, et al. Rapid eye movement sleep and slow wave sleep rebounded and related factors during positive airway pressure therapy[J]. Sci Rep, 2021,11(1):7599. [7] CARNICELLI L, MAESTRI M, DI COSCIO E, et al. A longitudinal study of polysomnographic variables in patients with mild cognitive impairment converting to Alzheimer’s disease[J]. J Sleep Res, 2019,28(5):e12821. [8] TADOKORO K, OHTA Y, HISHIKAWA N, et al. Discrepancy of subjective and objective sleep problems in Alzheimer’s disease and mild cognitive impairment detected by a home-based sleep analysis[J]. J Clin Neurosci, 2020,74:76-80. [9] CHOE Y M, SUH G H, KIM J W. Association of a history of sleep disorder with risk of mild cognitive impairment and Alzheimer’s disease dementia[J]. Psychiatry Investig, 2022,19(10):840-846. [10] TSAI M S, LI H Y, HUANG C G, et al. Risk of Alzheimer’s disease in obstructive sleep apnea patients with or without treatment: real-world evidence[J]. Laryngoscope, 2020,130(9):2292-2298. [11] AINI N, CHU H, BANDA K J, et al. Prevalence of sleep-related breathing disorders and associated risk factors among people with dementia: a meta-analysis[J]. Sleep Med, 2023,103:51-61. [12] GAETA A M, BENÍTEZ I D, JORGE C, et al. Prevalence of obstructive sleep apnea in Alzheimer’s disease patients[J]. J Neurol, 2019,267(4):1012-1022. [13] FERNANDES M, MARI L, CHIARAVALLOTI A, et al. 18F-FDG PET, cognitive functioning, and CSF biomarkers in patients with obstructive sleep apnoea before and after continuous positive airway pressure treatment[J]. J Neurol, 2022,269(10):5356-5367. [14] VANEK J, PRASKO J, GENZOR S, et al. Obstructive sleep apnea, depression and cognitive impairment[J]. Sleep Med, 2020,72:50-58. [15] KRISHNAN S, CHAI-COETZER C L, GRIVELL N, et al. Comorbidities and quality of life in australian men and women with diagnosed and undiagnosed high-risk obstructive sleep apnea[J]. J Clin Sleep Med, 2022,18(7):1757-1767. [16] GRANDNER M A, MIN J S, SAAD R, et al. Health-related impact of illness associated with excessive daytime sleepiness in patients with obstructive sleep apnea[J]. Postgrad Med, 2023,135(5):501-510. [17] CHOU K T, TSAI Y L, YEH W Y, et al. Risk of work-related injury in workers with obstructive sleep apnea: a systematic review and meta-analysis[J]. J Sleep Res, 2021,31(1):e13446. [18] 汤韫钰, 刘如恩. 阿尔兹海默病的诊断与综合治疗进展[J]. 中国实用神经疾病杂志, 2022,25(8):996-1000. [19] MARTINEAU-DUSSAULT M È, ANDRÉ C, DANEAULT V, et al. Medial temporal lobe and obstructive sleep apnea: effect of sex, age, cognitive status and free-water[J]. Neuroimage Clin, 2022,36:103235. [20] ZHOU L, LIU G, LUO H, et al. Aberrant hippocampal network connectivity is associated with neurocognitive dysfunction in patients with moderate and severe obstructive sleep apnea[J]. Front Neurol, 2020,11:580408 [21] BUBU O M, PIRRAGLIA E, ANDRADE A G, et al. Obstructive sleep apnea and longitudinal Alzheimer’s disease biomarker changes[J]. Sleep, 2019,42(6):zsz048. [22] LIGUORI C, MERCURI N B, NUCCETELLI M, et al. Obstructive sleep apnea may induce orexinergic system and cerebral β-amyloid metabolism dysregulation: is it a further proof for Alzheimer’s disease risk?[J]. Sleep Med, 2019,56:171-176. [23] DAKTERZADA F, BENÍTEZ I D, TARGA A, et al. Cerebrospinal fluid lipidomic fingerprint of obstructive sleep apnoea in Alzheimer’s disease[J]. Alzheimers Res Ther, 2023,15(1):134. [24] OWEN J E, BENEDIKTSDOTTIR B, COOK E, et al. Alzheimer’s disease neuropathology in the hippocampus and brainstem of people with obstructive sleep apnea[J]. Sleep, 2021,44(3):zsaa195. [25] KAZIM S F, SHARMA A, SAROJA S R, et al. Chronic intermittent hypoxia enhances pathological tau seeding, propagation, and accumulation and exacerbates Alzheimer-like memory and synaptic plasticity deficits and molecular signatures[J]. Biol Psychiatry, 2022,91(4):346-358. [26] WANG H, XIONG W, HANG S, et al. Depletion of SENP1-mediated PPARγ SUMOylation exaggerates intermittent hypoxia-induced cognitive decline by aggravating microglia-mediated neuroinflammation[J]. Aging: Albany NY, 2021,13(11):15240-15254. [27] WU X, GONG L, XIE L, et al. NLRP3 deficiency protects against intermittent hypoxia-induced neuroinflammation and mitochondrial ROS by promoting the PINK1-Parkin pathway of mitophagy in a murine model of sleep apnea[J]. Front Immunol, 2021,12:628168. [28] HUMPHREY C M, HOOKER J W, THAPA M, et al. Synaptic loss and gliosis in the nucleus tractus solitarii with streptozotocin-induced Alzheimer’s disease[J]. Brain Res, 2023,1801:148202. [29] ALEXANDER C, LI T, HATTORI Y, et al. Hypoxia inducible factor-1α binds and activates γ-secretase for Aβ production under hypoxia and cerebral hypoperfusion[J]. Mol Psychiatry, 2022,27(10):4264-4273. [30] QIAN L, RAWASHDEH O, KASAS L, et al. Cholinergic basal forebrain degeneration due to sleep-disordered breathing exacerbates pathology in a mouse model of Alzheimer’s disease[J]. Nat Commun, 2022,13(1):6543. [31] ROMIGI A, PRZYBYLSKA-KUĆ S, ZAKRZEWSKI M, et al. Obstructive sleep apnea may increase the risk of Alzheimer’s disease[J]. PLoS One, 2019,14(9):e0221255. [32] LEI L, FENG J, WU G, et al. HIF-1α causes LCMT1/PP2A deficiency and mediates tau hyperphosphorylation and cognitive dysfunction during chronic hypoxia[J]. Int J Mol Sci, 2022,23(24):16140. [33] BARIL A A, CARRIER J, LAFRENIÈRE A, et al. Biomarkers of dementia in obstructive sleep apnea[J]. Sleep Med Rev, 2018,42:139-148. [34] MACHEDA T, ROBERTS K, LYONS D N, et al. Chronic intermittent hypoxia induces robust astrogliosis in an Alzheimer’s disease-relevant mouse model[J]. Neuroscience, 2019,398:55-63. [35] SAPIN E, PEYRON C, ROCHE F, et al. Chronic intermittent hypoxia induces chronic low-grade neuroinflammation in the dorsal hippocampus of mice[J]. Sleep, 2015,38(10):1537-1546. [36] WANG H, YANG T, SUN J, et al. SENP1 modulates microglia-mediated neuroinflammation toward intermittent hypoxia-induced cognitive decline through the de-SUMOylation of NEMO[J]. J Cell Mol Med, 2021,25(14):6841-6854. [37] KHUU M A, PAGAN C M, NALLAMOTHU T, et al. Intermittent hypoxia disrupts adult neurogenesis and synaptic plasticity in the dentate gyrus[J]. J Neurosci, 2019,39(7):1320-1331. [38] CARNEY R S E DPHIL. Neurocognitive and synaptic potentiation deficits are mitigated by inhibition of HIF1a signaling following intermittent hypoxia in rodents[J]. eNeuro, 2020,7(6):ENEURO. 0449-20.2020. [39] ARIAS-CAVIERES A, FONTEH A, CASTRO-RIVERA C I, et al. Intermittent hypoxia causes targeted disruption to NMDA receptor dependent synaptic plasticity in area CA1 of the hippocampus[J]. Exp Neurol, 2021,344:113808. [40] KHUU M A, NALLAMOTHU T, CASTRO-RIVERA C I, et al. Stage-dependent effects of intermittent hypoxia influence the outcome of hippocampal adult neurogenesis[J]. Sci Rep, 2021,11(1):6005. |
[1] | 田甜, 张璇, 李铭麟, 王佳贺. 口腔衰弱与睡眠障碍关系的研究进展[J]. 实用老年医学, 2024, 38(9): 867-871. |
[2] | 刘乐乐, 解瑞川, 支楠, 高丽. 胶质淋巴系统在阿尔茨海默病中的作用[J]. 实用老年医学, 2024, 38(8): 770-774. |
[3] | 李清扬, 王婵娟, 王峥. 阿尔茨海默病病人吞咽功能、营养状态与认知功能的相关性研究[J]. 实用老年医学, 2024, 38(6): 577-581. |
[4] | 刘田, 杨荣礼, 韩慧萍. 血清Aβ1-42、Bcl-2预测老年人认知功能障碍进展为阿尔茨海默病的价值[J]. 实用老年医学, 2024, 38(6): 582-586. |
[5] | 庞学妍, 李绪领. 高频重复经颅磁刺激治疗阿尔茨海默病的研究进展[J]. 实用老年医学, 2024, 38(6): 634-638. |
[6] | 庾建英, 李妍慧, 付玉华. 急性脑梗死合并阻塞性睡眠呼吸暂停低通气综合征患者认知功能的动态观察[J]. 实用老年医学, 2016, 30(09): 752-. |
[7] | 何颖, 崔宇, 孙晓红, 王超, 党瑞, 吴群红, 王德才. 营养干预对阿尔茨海默病转基因小鼠脑内IDE和NEP水平的影响[J]. 实用老年医学, 2015, 29(3): 225-. |
[8] | 张丽霞, 张虔, 伍琦, 王彤. 脑卒中后睡眠呼吸暂停与吞咽障碍的相关性分析[J]. 实用老年医学, 2015, 29(12): 1034-. |
[9] | 王变荣, 时建铨, 顾小花, 韦存胜, 潘晓东, 孙奕, 张长春, 徐俊. 探讨血浆同型半胱氨酸水平与阿尔茨海默病患者认知功能评分的相关性[J]. 实用老年医学, 2015, 29(11): 913-. |
[10] | 宋芳芳, 姜礼红, 么晓轶, 孟松艳. 胰岛素样生长因子-1对APP/PS1双转基因 小鼠脑内Aβ1-40沉积的影响[J]. 实用老年医学, 2014, 28(11): 906-. |
[11] | 王兆霞. 延伸护理对老年痴呆患者生活质量的影响[J]. 实用老年医学, 2014, 28(03): 254-. |
[12] | 杨松, 吴德红, 柯燕, 蔡克涛, 武谦. 阿托伐他汀对阿尔茨海默病模型小鼠学习、记忆功能及Klotho蛋白的影响[J]. 实用老年医学, 2013, 27(9): 742-. |
[13] | 申东方, 张丽伟, 宋荣蓉. 多奈哌齐对侧脑室注射链脲菌素致痴呆 大鼠的治疗作用[J]. 实用老年医学, 2013, 27(12): 1000-. |
[14] | 张宝和, 王鲁宁. 老年阻塞性睡眠呼吸暂停综合征睡眠障碍特点与认知损害相关性分析[J]. 实用老年医学, 2010, 24(2): 122-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|