[1] GEDEK A, KOZIOROWSKI D, SZLUFIK S. Assessment of factors influencing glymphatic activity and implications for clinical medicine[J]. Front Neurol, 2023, 14: 1232304. [2] ASPELUND A, ANTILA S, PROULX S T, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules[J]. J Exp Med, 2015, 212(7): 991-999. [3] LOUVEAU A, SMIRNOV I, KEYES T J, et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature, 2015, 523(7560): 337-341. [4] ILIFF J J, WANG M, LIAO Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta[J]. Sci Transl Med, 2012, 4(147): 147ra1. [5] DA MESQUITA S, LOUVEAU A, VACCARI A, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease[J]. Nature, 2018, 560(7717): 185-191. [6] XIE L, KANG H, XU Q, et al. Sleep drives metabolite clearance from the adult brain[J]. Science, 2013, 342(6156): 373-377. [7] JUCKER M, WALKER L C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases[J]. Nature, 2013, 501(7465): 45-51. [8] ILIFF J J, WANG M, ZEPPENFELD D M, et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain[J]. J Neurosci, 2013, 33(46): 18190-18199. [9] LEE H, XIE L, YU M, et al. The effect of body posture on brain glymphatic transport[J]. J Neurosci, 2015, 35(31): 11034-11044. [10] ILIFF J J, LEE H, YU M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI[J].J Clin Invest, 2013, 123(3): 1299-1309. [11] BENVENISTE H, LEE H, DING F, et al. Anesthesia with dexmedetomidine and low-dose isoflurane increases solute transport via the glymphatic pathway in rat brain when compared with high-dose isoflurane[J]. Anesthesiology, 2017, 127(6): 976-988. [12] ACHARIYAR T M, LI B, PENG W, et al. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation[J]. Mol Neurodegener, 2016, 11(1): 74. [13] DREHA-KULACZEWSKI S, JOSEPH A A, MERBOLDT K D, et al. Inspiration is the major regulator of human CSF flow[J]. J Neurosci, 2015, 35(6): 2485-2491. [14] KRESS B T, ILIFF J J, XIA M, et al. Impairment of paravascular clearance pathways in the aging brain[J].Ann Neurol, 2014, 76(6): 845-861. [15] JESSEN N A, MUNK A S, LUNDGAARD I, et al. The glymphatic system: a beginner’s guide[J]. Neurochem Res, 2015, 40(12): 2583-2599. [16] LEUZY A, ASHTON N J, MATTSSON-CARLGREN N, et al. 2020 update on the clinical validity of cerebrospinal fluid amyloid, tau, and phospho-tau as biomarkers for Alzheimer’s disease in the context of a structured 5-phase development framework[J]. Eur J Nucl Med Mol Imaging, 2021, 48(7): 2121-2139. [17] XU Z, XIAO N, CHEN Y, et al. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Abeta accumulation and memory deficits[J]. Mol Neurodegener, 2015, 10: 58. [18] TAOKA T, MASUTANI Y, KAWAI H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases[J].Jap J Radiol, 2017, 35(4): 172-178. [19] GUNDERSEN G A, VINDEDAL G F, SKARE O, et al. Evidence that pericytes regulate aquaporin-4 polarization in mouse cortical astrocytes[J].Brain Struc Funct, 2014, 219(6): 2181-2186. [20] ZEPPENFELD D M, SIMON M, HASWELL J D, et al. Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains[J]. JAMA Neurol, 2017, 74(1): 91-99. [21] ISHIDA K, YAMADA K, NISHIYAMA R, et al. Glymphatic system clears extracellular tau and protects from tau aggregation and neurodegeneration[J]. J Exp Med, 2022, 219(3):e20211275. [22] HARRISON I F, ISMAIL O, MACHHADA A, et al. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model[J]. Brain, 2020, 143(8): 2576-2593. [23] ILIFF J J, CHEN M J, PLOG B A, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury[J].J Neurosci, 2014, 34(49): 16180-16193. [24] BURFEIND K G, MURCHISON C F, WESTAWAY S K, et al. The effects of noncoding aquaporin-4 single-nucleotide polymorphisms on cognition and functional progression of Alzheimer’s disease[J]. Alzheimers Dement, 2017, 3(3): 348-359. [25] RAINEY-SMITH S R, MAZZUCCHELLI G N, VILLEMAGNE V L, et al. Genetic variation in Aquaporin-4 moderates the relationship between sleep and brain Abeta-amyloid burden[J]. Transl Psychiatry, 2018, 8(1): 47. [26] WANG R, REDDY P H. Role of glutamate and NMDA receptors in Alzheimer’s disease[J]. J Alzheimers Dis, 2017, 57(4): 1041-1048. [27] SEVIGNY J, CHIAO P, BUSSIERE T, et al. The antibody aducanumab reduces abeta plaques in Alzheimer’s disease[J]. Nature, 2016, 537(7618): 50-56. [28] SALLOWAY S, CHALKIAS S, BARKHOF F, et al. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease[J]. JAMA Neurol, 2022, 79(1): 13-21. [29] WU W, JI Y, WANG Z, et al. The FDA-approved anti-amyloid-beta monoclonal antibodies for the treatment of Alzheimer’s disease: a systematic review and meta-analysis of randomized controlled trials[J].Eur J Med Res, 2023, 28(1): 544. [30] REN H, LUO C, FENG Y, et al. Omega-3 polyunsaturated fatty acids promote amyloid-beta clearance from the brain through mediating the function of the glymphatic system[J]. FASEB J, 2017, 31(1): 282-293. [31] ZHANG B, LI W, ZHUO Y, et al. L-3-n-butylphthalide effectively improves the glymphatic clearance and reduce amyloid-beta deposition in Alzheimer’s transgenic mice[J]. J Mol Neurosci, 2021, 71(6): 1266-1274. [32] LIU D X, HE X, WU D, et al. Continuous theta burst stimulation facilitates the clearance efficiency of the glymphatic pathway in a mouse model of sleep deprivation[J]. Neurosci Lett, 2017, 653: 189-194. [33] LIN Y, JIN J, LV R, et al. Repetitive transcranial magnetic stimulation increases the brain’s drainage efficiency in a mouse model of Alzheimer’s disease[J]. Acta Neuropathol Commun, 2021, 9(1): 102. [34] CHACHAJ A, GASIOROWSKI K, SZUBA A, et al. The lymphatic system in the brain clearance mechanisms - new therapeutic perspectives for Alzheimer’s disease[J]. Curr Neuropharmacol, 2023, 21(2): 380-391. [35] GUURE C B, IBRAHIM N A, ADAM M B, et al. Impact of physical activity on cognitive decline, dementia, and its subtypes: meta-analysis of prospective studies[J]. Biomed Res Intern,2017, 2017: 9016924. [36] HE X F, LIU D X, ZHANG Q, et al. Voluntary exercise promotes glymphatic clearance of amyloid beta and reduces the activation of astrocytes and microglia in aged mice[J]. Front Mol Neurosci, 2017, 10: 144. |