[1] SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1):17-48. [2] PAL S, TYLER J K.Epigenetics and aging[J]. Sci Adv, 2016, 2(7):e1600584. [3] PEREZ R F, TEJEDOR J R, FERNANDEZ A F, et al. Aging and cancer epigenetics: where do the paths fork?[J]. Aging Cell, 2022, 21(10):e13709. [4] LUO C, HAJKOVA P, ECKER J R.Dynamic DNA methylation: in the right place at the right time[J]. Science, 2018, 361(6409):1336-1340. [5] CEDAR H, BERGMAN Y.Programming of DNA methylation patterns[J]. Annu Rev Biochem, 2012, 81:97-117. [6] BABA Y, HUTTENHOWER C, NOSHO K, et al. Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors[J]. Mol Cancer, 2010, 9:125. [7] BELANCIO V P, DEININGER P L, ROY-ENGEL A M.LINE dancing in the human genome: transposable elements and disease[J]. Genome Med, 2009, 1(10):97. [8] BELANCIO V P, ROY-ENGEL A M, POCHAMPALLY R R, et al. Somatic expression of LINE-1 elements in human tissues[J]. Nucleic Acids Res, 2010, 38(12):3909-3922. [9] JAISWAL S, FONTANILLAS P, FLANNICK J, et al. Age-related clonal hematopoiesis associated with adverse outcomes[J]. N Engl J Med, 2014, 371(26):2488-2498. [10] SUN D, LUO M, JEONG M, et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal[J]. Cell Stem Cell, 2014, 14(5):673-688. [11] LOPEZ-OTIN C, PIETROCOLA F, ROIZ-VALLE D, et al. Meta-hallmarks of aging and cancer[J]. Cell Metab, 2023, 35(1):12-35. [12] SCHUBELER D.Function and information content of DNA methylation[J]. Nature, 2015, 517(7534):321-326. [13] MANGELINCK A, MANN C.DNA methylation and histone variants in aging and cancer[J]. Int Rev Cell Mol Biol, 2021, 364:1-110. [14] ISSA J P.Aging and epigenetic drift: a vicious cycle[J]. J Clin Invest, 2014, 124(1):24-29. [15] EASWARAN H, TSAI H C, BAYLIN S B.Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance[J]. Mol Cell, 2014, 54(5):716-727. [16] SHIBATA D.Inferring human stem cell behaviour from epigenetic drift[J]. J Pathol, 2009, 217(2):199-205. [17] SANDOVAL J, ESTELLER M.Cancer epigenomics: beyond genomics[J]. Curr Opin Genet Dev, 2012, 22(1):50-55. [18] HAN S, BRUNET A.Histone methylation makes its mark on longevity[J]. Trends Cell Biol, 2012, 22(1):42-49. [19] STEPHENS P J, TARPEY P S, DAVIES H, et al. The landscape of cancer genes and mutational processes in breast cancer[J]. Nature, 2012, 486(7403):400-404. [20] KRISHNAN V, CHOW M Z, WANG Z, et al. Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice[J]. Proc Natl Acad Sci U S A, 2011, 108(30):12325-12330. [21] DANG W, STEFFEN K K, PERRY R, et al. Histone H4 lysine 16 acetylation regulates cellular lifespan[J]. Nature, 2009, 459(7248):802-807. [22] HUANG H T, KATHREIN K L, BARTON A, et al. A network of epigenetic regulators guides developmental haematopoiesis in vivo[J]. Nat Cell Biol, 2013, 15(12):1516-1525. [23] ZHANG J, LIU H, PAN H, et al. The histone acetyltransferase hMOF suppresses hepatocellular carcinoma growth[J]. Biochem Biophys Res Commun, 2014, 452(3):575-580. [24] O’SULLIVAN R J, KUBICEK S, SCHREIBER S L, et al. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres[J]. Nat Struct Mol Biol, 2010, 17(10):1218-1225. [25] SADAIE M, SALAMA R, CARROLL T, et al. Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence[J]. Genes Dev, 2013, 27(16):1800-1808. [26] XIAO F H, WANG H T, CHEN X Q, et al. Hypermethylation in H3K9me3 regions characterizes the centenarian methylomes in healthy aging[J]. Natl Sci Rev, 2023, 10(6):nwad067. [27] MULLER-TIDOW C, KLEIN H U, HASCHER A, et al. Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia[J]. Blood, 2010, 116(18):3564-3571. [28] XIA R, ZHOU R, TIAN Z, et al. High expression of H3K9me3 is a strong predictor of poor survival in patients with salivary adenoid cystic carcinoma[J]. Arch Pathol Lab Med, 2013, 137(12):1761-1769. [29] APLAN P D.Chromosomal translocations involving the MLL gene: molecular mechanisms[J]. DNA Repair: Amst, 2006, 5(9/10):1265-1272. [30] TRYNDYAK V P, KOVALCHUK O, POGRIBNY I P.Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20h2 histone methyltransferase and methyl-binding proteins[J]. Cancer Biol Ther, 2006, 5(1):65-70. [31] RAM O, GOREN A, AMIT I, et al. Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells[J]. Cell, 2011, 147(7):1628-1639. [32] MITTAL P, ROBERTS C W M.The SWI/SNF complex in cancer-biology, biomarkers and therapy[J]. Nat Rev Clin Oncol, 2020, 17(7):435-448. [33] WU Z, ZHOU J, ZHANG X, et al. Reprogramming of the esophageal squamous carcinoma epigenome by SOX2 promotes ADAR1 dependence[J]. Nat Genet, 2021, 53(6):881-894. [34] SCAFFIDI P, MISTELI T.In vitro generation of human cells with cancer stem cell properties[J]. Nat Cell Biol, 2011, 13(9):1051-1061. [35] PAN J, MCKENZIE Z M, D’AVINO A R, et al. The ATPase module of mammalian SWI/SNF family complexes mediates subcomplex identity and catalytic activity-independent genomic targeting[J]. Nat Genet, 2019, 51(4):618-626. [36] MASHTALIR N, D’AVINO A R, MICHEL B C, et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes[J]. Cell, 2018, 175(5):1272-1288. [37] HUAN T, CHEN G, LIU C, et al. Age-associated microRNA expression in human peripheral blood is associated with all-cause mortality and age-related traits[J]. Aging Cell, 2018, 17(1):e12687. [38] BOEHM M, SLACK F.A developmental timing microRNA and its target regulate life span in C.elegans[J]. Science, 2005, 310(5756):1954-1957. [39] FU V X, DOBOSY J R, DESOTELLE J A, et al. Aging and cancer-related loss of insulin-like growth factor 2 imprinting in the mouse and human prostate[J]. Cancer Res, 2008, 68(16):6797-6802. [40] MIYATA K, IMAI Y, HORI S, et al. Pericentromeric noncoding RNA changes DNA binding of CTCF and inflammatory gene expression in senescence and cancer[J]. Proc Natl Acad Sci U S A, 2021, 118(35):e2025647118. [41] HARRIES L W.MicroRNAs as mediators of the ageing process[J]. Genes: Basel, 2014, 5(3):656-670. [42] SMITH-VIKOS T, SLACK F J.MicroRNAs and their roles in aging[J]. J Cell Sci, 2012, 125(Pt 1):7-17. [43] HATSE S, BROUWERS B, DALMASSO B, et al. Circulating microRNAs as easy-to-measure aging biomarkers in older breast cancer patients: correlation with chronological age but not with fitness/frailty status[J]. PLoS One, 2014, 9(10):e110644. [44] CATANA C S, CALIN G A, BERINDAN-NEAGOE I.Inflamma-miRs in aging and breast cancer: are they reliable players?[J]. Front Med: Lausanne, 2015, 2:85. [45] ZAGRYAZHSKAYA A, ZHIVOTOVSKY B.miRNAs in lung cancer: a link to aging[J]. Ageing Res Rev, 2014, 17:54-67. |