[1] MATSUSHITA K, BALLEW S H, WANG A Y, et al. Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease[J]. Nat Rev Nephrol, 2022, 18(11): 696-707. [2] PARK S, LEE S, KIM Y, et al. A mendelian randomization study found causal linkage between telomere attrition and chronic kidney disease[J]. Kidney Int, 2021, 100(5): 1063-1070. [3] KIDIR V, AYNALI A, ALTUNTAS A, et al. Telomerase activity in patients with stage 2-5D chronic kidney disease[J]. Nefrologia, 2017, 37(6): 592-597. [4] LATA S, MARASA M, LI Y, et al. Whole-exome sequencing in adults with chronic kidney disease: a pilot study[J]. Ann Intern Med, 2018, 168(2): 100-109. [5] SUN Q, LIU J, CHENG G, et al. The telomerase gene polymorphisms, but not telomere length, increase susceptibility to primary glomerulonephritis/end stage renal diseases in females[J]. J Transl Med, 2020, 18(1): 184. [6] QAISAR R, BHASKARAN S, PREMKUMAR P, et al. Oxidative stress-induced dysregulation of excitation-contraction coupling contributes to muscle weakness[J]. J Cachexia Sarcopenia Muscle, 2018, 9(5): 1003-1017. [7] FULOP G A, KISS T, TARANTINI S, et al. Nrf2 deficiency in aged mice exacerbates cellular senescence promoting cerebrovascular inflammation[J]. Geroscience, 2018, 40(5/6): 513-521. [8] LIU C, GIDLUND E K, WITASP A, et al. Reduced skeletal muscle expression of mitochondrial-derived peptides humanin and MOTS-C and Nrf2 in chronic kidney disease[J]. Am J Physiol Renal Physiol, 2019, 317(5): F1122-F1131. [9] STOCKLER-PINTO M B, SOULAGE C O, BORGES N A, et al. From bench to the hemodialysis clinic: protein-bound uremic toxins modulate Nf-Κb/Nrf2 expression[J]. Int Urol Nephrol, 2018, 50(2): 347-354. [10] NAGASU H, SOGAWA Y, KIDOKORO K, et al. Bardoxolone methyl analog attenuates proteinuria-induced tubular damage by modulating mitochondrial function[J]. FASEB J, 2019, 33(11): 12253-12263. [11] SANAJOU D, GHORBANI HAGHJO A, ARGANI H, et al. Age-rage axis blockade in diabetic nephropathy: current status and future directions[J]. Eur J Pharmacol, 2018, 833: 158-164. [12] LIU J, HUANG K, CAI G Y, et al. Receptor for advanced glycation end-products promotes premature senescence of proximal tubular epithelial cells via activation of endoplasmic reticulum stress-dependent p21 signaling[J]. Cell Signal, 2014, 26(1): 110-121. [13] KURO O M. The klotho proteins in health and disease[J]. Nat Rev Nephrol, 2019, 15(1): 27-44. [14] LI C, XIE N, LI Y, et al. N-acetylcysteine ameliorates cisplatin-induced renal senescence and renal interstitial fibrosis through sirtuin1 activation and p53 deacetylation[J]. Free Radic Biol Med, 2019, 130: 512-527. [15] ZHUANG K, JIANG X, LIU R, et al. Formononetin activates the Nrf2/ARE signaling pathway via Sirt1 to improve diabetic renal fibrosis[J]. Front Pharmacol, 2020, 11: 616378. [16] LIU T, YANG Q, ZHANG X, et al. Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the Sirt1/Pink1/Mitophagy axis[J]. Life Sci, 2020, 257: 118116. [17] SUN H J, XIONG S P, CAO X, et al. Polysulfide-mediated sulfhydration of Sirt1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of P65 Nf-Κb and Stat3[J]. Redox Biol, 2021, 38: 101813. [18] LI P, LIU Y, QIN X, et al. SIRT1 attenuates renal fibrosis by repressing HIF-2α[J]. Cell Death Discov, 2021, 7(1): 59. [19] GOLIGORSKY M S.Chronic kidney disease: a vicarious relation to premature cell senescence[J]. Am J Pathol, 2020, 190(6): 1164-1171. [20] SCHROTH J, THIEMERMANN C, HENSON S M.Senescence and the aging immune system as major drivers of chronic kidney disease[J]. Front Cell Dev Biol, 2020, 8: 564461. [21] LI Z, WANG Z.Aging kidney and aging-related disease[J]. Adv Exp Med Biol, 2018, 1086: 169-187. [22] YANG L, WANG B, GUO F, et al. FFAR4 improves the senescence of tubular epithelial cells by AMPK/SirT3 signaling in acute kidney injury[J]. Signal Transduct Target Ther, 2022, 7(1): 384. [23] KIRKLAND J L,TCHKONIA T.Cellular senescence: a translational perspective[J]. EBioMedicine, 2017, 21: 21-28. [24] BAAR M P, BRANDT R M C, PUTAVET D A, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging[J]. Cell, 2017, 169(1): 132-147 e116. [25] YOSEF R, PILPEL N, PAPISMADOV N, et al. P21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling[J]. EMBO J, 2017, 36(15): 2280-2295. [26] FUHRMANN-STROISSNIGG H, LING Y Y, ZHAO J, et al. Identification of Hsp90 inhibitors as a novel class of senolytics[J]. Nat Commun, 2017, 8(1): 422. [27] NAKAMURA S, OBA M, SUZUKI M, et al. Suppression of autophagic activity by rubicon is a signature of aging[J]. Nat Commun, 2019, 10(1): 847. [28] SCHMITT R,MELK A. Molecular mechanisms of renal aging[J]. Kidney Int, 2017, 92(3): 569-579. [29] LISOWSKA K A, DE,BSKA-ŚLIZIEŃ A, JASIULEWICZ A, et al. Hemodialysis affects phenotype and proliferation of CD4-positive T lymphocytes[J]. J Clin Immunol, 2012, 32(1): 189-200. [30] PEREIRA B I, DEVINE O P, VUKMANOVIC-STEJIC M, et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8(+) T cell inhibition[J]. Nat Commun, 2019, 10(1): 2387. [31] VERZOLA D, GANDOLFO M T, GAETANI G, et al. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy[J]. Am J Physiol Renal Physiol, 2008, 295(5): F1563-1573. [32] 王珊, 马清, 杨华昱, 等. 不同年龄段人群尿液外泌体中miR-150-5p对肾脏衰老的影响[J]. 中华老年医学杂志, 2021, 40(11): 1386-1391. [33] LIU Y, GUO Y, BAO S, et al. Bone marrow mesenchymal stem cell-derived exosomal microRNA-381-3p alleviates vascular calcification in chronic kidney disease by targeting NFAT5[J]. Cell Death Dis, 2022, 13(3): 278. [34] 周梅, 汤义兵, 曹雷, 等. 老年慢性肾小球肾炎病人血清ficolin-3水平与肾功能损害程度及预后的关系[J]. 实用老年医学, 2023, 37(1): 26-30. [35] ZHANG Y, NI X, WEI L, et al. METTL3 Alleviates D-gal-Induced renal tubular epithelial cellular senescence via promoting miR-181a maturation[J]. Mech Ageing Dev, 2023, 210: 111774. [36] RENKEMA K Y, STOKMAN M F, GILES R H, et al. Next-generation sequencing for research and diagnostics in kidney disease[J]. Nat Rev Nephrol, 2014, 10(8): 433-444. [37] YOSHIMURA Y, MUTO Y, OMACHI K, et al. Elucidating the proximal tubule Hnf4a gene regulatory network in human kidney organoids[J]. J Am Soc Nephrol, 2023, 34(10): 1672-1686. |