实用老年医学 ›› 2025, Vol. 39 ›› Issue (10): 976-981.doi: 10.3969/j.issn.1003-9198.2025.10.002
张孔雁
收稿日期:2025-07-23
发布日期:2025-10-28
作者简介:张孔雁 副主任医师
ZHANG Kongyan
Received:2025-07-23
Published:2025-10-28
摘要: 老年抑郁症(LLD)因发病机制复杂、临床表现异质而成为老龄化社会的重要公共卫生难题。本文系统回顾了基因组、表观基因组、转录组、蛋白质组、代谢组及多组学整合研究在LLD中的最新进展,为LLD的早期诊断、预后评估和个性化治疗提供了新的生物标志物和治疗策略。未来相关研究还需在大样本跨种族验证、生物标志物转化及衰老干预方面持续突破。
中图分类号:
张孔雁. 老年抑郁症的多组学研究进展[J]. 实用老年医学, 2025, 39(10): 976-981.
ZHANG Kongyan. Advances in multi-omics research on depression in the elderly[J]. Practical Geriatrics, 2025, 39(10): 976-981.
| [1] ZHANG L, WANG L, YU M, et al. Hybrid representation learning for cognitive diagnosis in late-life depression over 5 years with structural MRI[J]. Med Image Anal, 2024, 94: 103135. [2] GAO Y, SONG X N, WEN Z P, et al. The association of vitamin deficiency with depression risk in late-life depression: a review[J]. Front Nutr, 2025, 12: 1551375. [3] UYSAL CESUR N, POYRAZ B Ç. Three-year prognosis of late-life depression in an outpatient geriatric psychiatry clinic: medical comorbidities worsen outcomes[J]. Psychiatr Q, 2023, 94(4): 675-689. [4] LIU M, MA W, HE Y, et al. Recent progress in mass spectrometry-based metabolomics in major depressive disorder research[J]. Molecules, 2023, 28(21): 7430. [5] CHEN C, WANG J, PAN D, et al. Applications of multi-omics analysis in human diseases[J]. MedComm, 2023, 4(4): e315. [6] WU W, HOWARD D, SIBILLE E, et al. Differential and spatial expression meta-analysis of genes identified in genome-wide association studies of depression[J]. Transl Psychiatry, 2021, 11(1): 8. [7] ALS T D, KURKI M I, GROVE J, et al. Depression pathophysiology, risk prediction of recurrence and comorbid psychiatric disorders using genome-wide analyses[J]. Nat Med, 2023, 29(7): 1832-1844. [8] MITCHELL B L, CAMPOS A I, WHITEMAN D C, et al. The Australian genetics of depression study: new risk loci and dissecting heterogeneity between subtypes[J]. Biol Psychiatry, 2022, 92(3): 227-235. [9] HOFSTRA B M, KAS M J H, VERBEEK D S. Comprehensive analysis of genetic risk loci uncovers novel candidate genes and pathways in the comorbidity between depression and Alzheimer’s disease[J]. Transl Psychiatry, 2024, 14(1): 253. [10] WINGO T S, GERASIMOV E S, CANON S M, et al. Alzheimer’s disease genetic burden is associated with mid-life depression among persons with normal cognition[J]. Alzheimers Dement, 2023, 19(3): 868-874. [11] MARSHE V S, MACIUKIEWICZ M, HAUSCHILD A C, et al. Genome-wide analysis suggests the importance of vascular processes and neuroinflammation in late-life antidepressant response[J]. Transl Psychiatry, 2021, 11(1): 127. [12] BAUM M L, WIDGE A S, CARPENTER L L, et al. Pharmacogenomic clinical support tools for the treatment of depression[J]. Am J Psychiatry, 2024, 181(7): 591-607. [13] BELVEDERI MURRI M, GRASSI L, CARUSO R, et al. Depressive symptom complexes of community-dwelling older adults: a latent network model[J]. Mol Psychiatry, 2022, 27(2): 1075-1082. [14] LORENZO E C, KUCHEL G A, KUO C L, et al. Major depression and the biological hallmarks of aging[J]. Ageing Res Rev, 2023, 83: 101805. [15] SATHYANARAYANAN A, MUELLER T T, ALI MONI M, et al. Multi-omics data integration methods and their applications in psychiatric disorders[J]. Eur Neuropsychopharmacol, 2023, 69: 26-46. [16] YANG H H, HAN K M, KIM A, et al. Neuroimaging and epigenetic analysis reveal novel epigenetic loci in major depressive disorder[J]. Psychol Med, 2024, 54(10): 2585-2598. [17] SOKOLOV A V, SCHIÖTH H B. Decoding depression: a comprehensive multi-cohort exploration of blood DNA methylation using machine learning and deep learning approaches[J]. Transl Psychiatry, 2024, 14(1): 287. [18] HAN L K M, AGHAJANI M, PENNINX B W J H, et al. Lagged effects of childhood depressive symptoms on adult epigenetic aging[J]. Psychol Med, 2024, 54(12): 1-9. [19] LESICKA M, DMITRZAK-WEGLARZ M, JABLONSKA E, et al. Methylation of melatonin receptors in patients with unipolar and bipolar depression[J]. Mech Ageing Dev, 2023, 211: 111776. [20] DWIVEDI Y, ROY B, KORLA P K. Genome-wide methylome-based molecular pathologies associated with depression and suicide[J]. Neuropsychopharmacology, 2025, 50(4): 705-716. [21] DU J, LIU N, MA L, et al. Antidepressant effect of the novel histone deacetylase-5 inhibitor T2943 in a chronic restraint stress mouse model[J]. Biomed Pharmacother, 2024, 171: 116176. [22] TORRES-BERRÍO A, ESTILL M, PATEL V, et al. Mono-methylation of lysine 27 at histone 3 confers lifelong susceptibility to stress[J]. Neuron, 2024, 112(17): 2973-2989.e10. [23] AL-KACHAK A, DI SALVO G, FULTON S L, et al. Histone serotonylation in dorsal raphe nucleus contributes to stress- and antidepressant-mediated gene expression and behavior[J]. Nat Commun, 2024, 15(1): 5042. [24] LI C, XU P, HUANG Y, et al. RNA methylations in depression, from pathological mechanism to therapeutic potential[J]. Biochem Pharmacol, 2023, 215: 115750. [25] GUO F, FAN J, LIU J M, et al. Astrocytic ALKBH5 in stress response contributes to depressive-like behaviors in mice[J]. Nat Commun, 2024, 15(1): 4347. [26] CHEN C Y, WANG Y F, LEI L, et al. MicroRNA-specific targets for neuronal plasticity, neurotransmitters, neurotrophic factors, and gut microbes in the pathogenesis and therapeutics of depression[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2025, 136: 111186. [27] FAN L, ZENG P, WANG X, et al. Xiaoyao Pills, a Chinese patent medicine, treats mild and moderate depression: a randomized clinical trial combined with DNA methylation analysis[J]. Phytomedicine, 2024, 130: 155660. [28] ZENG L, FUJITA M, GAO Z, et al. A single-nucleus transcriptome-wide association study implicates novel genes in depression pathogenesis[J]. Biol Psychiatry, 2024, 96(1): 34-43. [29] SFORZINI L, MARIZZONI M, BOTTANELLI C, et al. Transcriptomic profiles in major depressive disorder: the role of immunometabolic and cell-cycle-related pathways in depression with different levels of inflammation[J]. Mol Psychiatry, 2025, 30(4): 1308-1318. [30] GUEDES P H G, BRUSSASCO J G, MOÇO A C R, et al. A highly reusable genosensor for late-life depression diagnosis based on microRNA 184 attomolar detection in human plasma[J]. Talanta, 2023, 258: 124342. [31] HICKS E M, SEAH C, COTE A, et al. Integrating genetics and transcriptomics to study major depressive disorder: a conceptual framework, bioinformatic approaches, and recent findings[J]. Transl Psychiatry, 2023, 13(1): 129. [32] KANG J, YANG L, JIA T, et al. Plasma proteomics identifies proteins and pathways associated with incident depression in 46, 165 adults[J]. Sci Bull, 2025, 70(4): 573-586. [33] SUN R, TANG M Y, YANG D, et al. C3aR in the medial prefrontal cortex modulates the susceptibility to LPS-induced depressive-like behaviors through glutamatergic neuronal excitability[J]. Prog Neurobiol, 2024, 236: 102614. [34] PU J, LIU Y, WU H, et al. Characterizing metabolomic and proteomic changes in depression: a systematic analysis[J]. Mol Psychiatry, 2025, 30(7): 3120-3128. [35] MA S, XIE X, DENG Z, et al. A machine learning analysis of big metabolomics data for classifying depression: model development and validation[J]. Biol Psychiatry, 2024, 96(1): 44-56. [36] LIU Y, ZHAO W, LU Y, et al. Systematic metabolic characterization of mental disorders reveals age-related metabolic disturbances as potential risk factors for depression in older adults[J]. MedComm, 2022, 3(4): e165. [37] AMIN N, LIU J, BONNECHERE B, et al. Interplay of metabolome and gut microbiome in individuals with major depressive disorder vs control individuals[J]. JAMA Psychiatry, 2023, 80(6): 597-609. [38] CHEN X, WANG Y, PEI C, et al. Vacancy-driven high-performance metabolic assay for diagnosis and therapeutic evaluation of depression[J]. Adv Mater, 2024, 36(28): e2312755. [39] VAN DER SPEK A, STEWART I D, KÜHNEL B, et al. Circulating metabolites modulated by diet are associated with depression[J]. Mol Psychiatry, 2023, 28(9): 3874-3887. [40] O’CONNOR L M, O’CONNOR B A, LIM S B, et al. Integrative multi-omics and systems bioinformatics in translational neuroscience: a data mining perspective[J]. J Pharm Anal, 2023, 13(8): 836-850. [41] OMRAN M M, EMAM M, GAMALELDIN M, et al. Comparative analysis of statistical and deep learning-based multi-omics integration for breast cancer subtype classification[J]. J Transl Med, 2025, 23(1): 709. [42] BI X A, SHEN W, SHAN Y, et al. MSAFF: multi-way soft attention fusion framework with the large foundation models for the diagnosis of Alzheimer’s disease[J]. IEEE Trans Neural Netw Learn Syst, 2025: PP. [43] PANG J, LIANG B, DING R, et al. A denoised multi-omics integration framework for cancer subtype classification and survival prediction[J]. Brief Bioinform, 2023, 24(5): bbad304. [44] WU X, YANG X, DAI Y, et al. Single-cell sequencing to multi-omics: technologies and applications[J]. Biomark Res, 2024, 12(1): 110. [45] CHEN M, CHENG R, HE J, et al. SMOPCA: spatially aware dimension reduction integrating multi-omics improves the efficiency of spatial domain detection[J]. Genome Biol, 2025, 26(1): 135. [46] HARLEV D, SINGER S, GOLDSHALGER M, et al. Acoustic speech features are associated with late-life depression and apathy symptoms: preliminary findings[J]. Alzheimers Dement, 2025, 17(1): e70055. [47] TAN J, MA C, ZHU C, et al. Prediction models for depression risk among older adults: systematic review and critical appraisal[J]. Ageing Res Rev, 2023, 83: 101803. |
| [1] | 王美娟, 姜学忠, 王屹. 老年人深静脉血栓治疗进展[J]. 实用老年医学, 2025, 39(9): 865-870. |
| [2] | 张一丹, 杨建, 刘姣, 李霞, 龚黎, 姚静. 老年人深静脉血栓的影像学诊断进展[J]. 实用老年医学, 2025, 39(9): 871-875. |
| [3] | 杜海雯, 张一丹, 李霞, 刘姣, 魏淑萍. 老年人深静脉血栓的流行病学与危险因素研究进展[J]. 实用老年医学, 2025, 39(9): 879-882. |
| [4] | 章雨雯, 陈立建. 晶体预扩容和胶体预扩容对老年病人无痛肠镜血流动力学和术后早期认知功能的影响[J]. 实用老年医学, 2025, 39(9): 894-898. |
| [5] | 朱承媛, 路悦, 郏文亭, 黄悦, 林枫, 张丽霞. 探讨健康老年人基于失语症语料任务的会话特征[J]. 实用老年医学, 2025, 39(9): 899-903. |
| [6] | 黄涌, 王锋锋, 石伯生, 黄丽, 王志飞. 经皮穴位电刺激对老年髋部骨折病人术后疼痛管理及胃肠功能恢复的影响[J]. 实用老年医学, 2025, 39(9): 910-914. |
| [7] | 吕文君, 康静, 莫非. 健康生态学视角下中国老年人日常活动能力现状及影响因素研究[J]. 实用老年医学, 2025, 39(9): 915-919. |
| [8] | 闫振龙, 黄萍, 陈蒙, 陶俊杰, 王玉川, 陈丽莉, 范雅, 李泽华, 周小恬. 中文版老年人风险识别量表的修订及在急诊病人中的信效度验证[J]. 实用老年医学, 2025, 39(9): 920-923. |
| [9] | 张宁, 高秀, 康琳, 刘晓红. 17例老年肺放线菌感染病人临床特征分析[J]. 实用老年医学, 2025, 39(9): 924-928. |
| [10] | 莫军, 张思平, 张焕文, 李建江, 丹尼尔·阿不力米提, 黄异飞. 选择性椎体成形术治疗多节段骨质疏松性椎体骨折的疗效观察[J]. 实用老年医学, 2025, 39(9): 929-932. |
| [11] | 姚贺玲, 王余, 李宛凇, 骆泓洁, 吕晓磊, 王欣, 冯丽娜. 老年脑小血管病脑白质高信号对膀胱过度活动症的临床价值[J]. 实用老年医学, 2025, 39(9): 933-936. |
| [12] | 姚远, 杨勇. 免疫衰老在老年非小细胞肺癌中的作用机制研究进展[J]. 实用老年医学, 2025, 39(9): 947-951. |
| [13] | 周丹, 魏可欣, 邓姝, 何锐. 人工智能与可穿戴设备在老年人静脉血栓栓塞防治中的研究进展[J]. 实用老年医学, 2025, 39(9): 963-967. |
| [14] | 何欣欣, 谢冬梅, 王晓玲, 李颖, 高浪丽. 人工智能在失能老年人照护中的应用研究进展[J]. 实用老年医学, 2025, 39(8): 757-761. |
| [15] | 江会增, 刘金娜, 张丹丹, 张洁. 人工智能在老年人跌倒风险管理中的应用进展[J]. 实用老年医学, 2025, 39(8): 762-767. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|