[1] BAJAJ S, MAHESH R. Converged avenues: depression and Alzheimer’s disease- shared pathophysiology and novel therapeutics[J]. Mol Biol Rep, 2024, 51(1): 225. [2] SCHELTENS P, DE STROOPER B, KIVIPELTO M, et al. Alzheimer’s disease [J]. Lancet, 2021, 397(10284): 1577-1590. [3] AHMADI A, GISPERT J D, NAVARRO A, et al. Single-cell transcriptional changes in neurodegenerative diseases[J]. Neuroscience, 2021, 479: 192-205. [4] LIAO J, QIAN J, FANG Y, et al.De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution[J]. Nat Commun, 2022, 13(1): 6498. [5] JOVIC D, LIANG X, ZENG H, et al. Single-cell RNA sequencing technologies and applications: a brief overview[J]. Clin Transl Med, 2022, 12(3): e694. [6] LI Y, MA L, WU D, et al. Advances in bulk and single-cell multi-omics approaches for systems biology and precision medicine[J]. Brief Bioinform, 2021, 22(5): bbab024. [7] ZHANG X, LI T, LIU F, et al. Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems[J]. Mol Cell, 2019, 73(1): 130-142.e5. [8] PICELLI S, BJÖRKLUND Å K, FARIDANI O R, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10(11): 1096-1098. [9] HASHIMSHONY T, WAGNER F, SHER N, et al. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification[J]. Cell Rep, 2012, 2(3): 666-673. [10] HASHIMSHONY T, SENDEROVICH N, AVITAL G, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biol, 2016, 17: 77. [11] CRISTIAN P M, AARÓN V J, ARMANDO E D, et al. Diffusion on PCA-UMAP manifold: the impact of data structure preservation to denoise high-dimensional single-cell RNA sequencing data[J]. Biology, 2024, 13(7): 512. [12] BECHT E, MCINNES L, HEALY J, et al. Dimensionality reduction for visualizing single-cell data using UMAP[J]. Nat Biotechnol, 2018. [13] BRAAK H, ALAFUZOFF I, ARZBERGER T, et al. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry[J]. Acta Neuropathol, 2006, 112(4): 389-404. [14] LI M L, WU S H, SONG B, et al. Single-cell analysis reveals transcriptomic reprogramming in aging primate entorhinal cortex and the relevance with Alzheimer’s disease[J]. Aging Cell, 2022, 21(11): e13723. [15] LUQUEZ T, GAUR P, KOSATER I M, et al. Cell type-specific changes identified by single-cell transcriptomics in Alzheimer’s disease[J]. Genome Med, 2022, 14(1): 136. [16] SOREQ L, BIRD H, MOHAMED W, et al. Single-cell RNA sequencing analysis of human Alzheimer’s disease brain samples reveals neuronal and glial specific cells differential expression[J]. PLoS One, 2023, 18(2): e0277630. [17] SHAO F, WANG M, GUO Q, et al. Characterization of Alzheimer’s disease-associated excitatory neurons via single-cell RNA sequencing analysis [J].Front Aging Neurosci, 2021, 13: 742176. [18] LIU X X, BUTLER R R, III, GYAWALI P K, et al. ScAtt: an attention based architecture to analyze Alzheimer’s disease at cell type level from single-cell RNA-sequencing data [EB/OL]. (2024-05-12)[2025-01-13]. http://doi.org/10.48550/arxiv.2405.17433. [19] GRUBMAN A, CHEW G, OUYANG J F, et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation[J]. Nat Neurosci, 2019, 22(12): 2087-2097. [20] DANG Y, HE Q, YANG S, et al. FTH1- and SAT1-induced astrocytic ferroptosis is involved in Alzheimer’s disease: evidence from single-cell transcriptomic analysis[J]. Pharmaceuticals, 2022, 15(10): 1177. [21] OLAH M, MENON V, HABIB N, et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease[J]. Nat Commun, 2020, 11(1): 6129. [22] KUBICK N, HENCKELL FLOURNOY P C, KLIMOVICH P, et al. What has single-cell RNA sequencing revealed about microglial neuroimmunology?[J]. ImmunInflamm Dis, 2020, 8(4): 825-839. [23] CHOI H, CHOI Y, LEE E J, et al. Hippocampal glucose uptake as a surrogate of metabolic change of microglia in Alzheimer’s disease[J]. J Neuroinflammation, 2021, 18(1): 190. [24] GREENHALGH A D, DAVID S, CHRIS BENNETT F. Immune cell regulation of Glia during CNS injury and disease[J]. Nat Rev Neurosci, 2020, 21(3): 139-152. [25] XU H, JIA J. Single-cell RNA sequencing of peripheral blood reveals immune cell signatures in Alzheimer’s disease[J]. Front Immunol, 2021, 12: 645666. [26] XIONG L L, XUE L L, DU R L, et al. Single-cell RNA sequencing reveals B cell-related molecular biomarkers for Alzheimer’s disease[J]. Exp Mol Med, 2021, 53(12): 1888-1901. [27] VAN DE SANDE B, LEE J S, MUTASA-GOTTGENS E, et al. Applications of single-cell RNA sequencing in drug discovery and development[J]. Nat Rev Drug Discov, 2023, 22(6): 496-520. [28] LI M, FLACK N, LARSEN P A. Multifaceted role of specialized neuropeptide-intensive neurons on the selective vulnerability to Alzheimer’s disease in the human brain[J]. Biomolecules, 2024, 14(12): 1518. [29] BOULAND G A, MARINUS K I, VAN KESTEREN R E, et al. Single-cell RNA sequencing data reveals rewiring of transcriptional relationships in Alzheimer’s disease associated with risk variants[EB/OL]. (2023-05-16)[2025-01-13].http://doiorg/10.1101/2023.05.15.23289992. [30] XU Y, KONG J, HU P. Computational drug repurposing for Alzheimer’s disease using risk genes from GWAS and single-cell RNA sequencing studies[J]. Front Pharmacol, 2021, 12: 617537. [31] XU J, ZHANG P, HUANG Y, et al. Multimodal single-cell/nucleus RNA sequencing data analysis uncovers molecular networks between disease-associated microglia and astrocytes with implications for drug repurposing in Alzheimer’s disease[J]. Genome Res, 2021, 31(10): 1900-1912. |