[1] KIM D H, ROCKWOOD K. Frailty in older adults[J]. N Engl J Med,2024, 391(6):538-548. [2] 高敬宇, 王婷, 谭思敏. 多发性骨髓瘤病人衰弱评估的研究进展[J]. 实用老年医学, 2025, 39(5): 534-538. [3] MARINO C, IMARISIO A, GASPARRI C, et al. 1H-NMR-based metabolomics identifies disrupted betaine metabolism as distinct serum signature of pre-frailty[J]. NPJ Aging, 2025, 11(1): 26. [4] DENT E, MARTIN F C, BERGMAN H, et al. Management of frailty: opportunities, challenges, and future directions[J]. Lancet, 2019, 394(10206): 1376-1386. [5] CASTELL M V, SÁNCHEZ M, JULIÁN R, et al. Frailty prevalence and slow walking speed in persons age 65 and older: implications for primary care[J]. BMC Fam Pract, 2013, 14: 86. [6] NAKANOWATARI T, HOSHI M, ASAO A, et al. In-shoe sensor measures of loading asymmetry during gait as a predictor of frailty development in community-dwelling older adults[J]. Sensors:Basel, 2024, 24(15): 5054. [7] ZARE H, TAGHARROBI Z, ZARE M. Cross-cultural adaptation and psychometric evaluation of the social frailty scale in Iranian older adults[J]. BMC Geriatr, 2024, 24(1): 368. [8] HOOGENDIJK E O, AFILALO J, ENSRUD K E, et al. Frailty: implications for clinical practice and public health[J]. Lancet, 2019, 394(10206): 1365-1375. [9] ZHANG Z, LIU C, ZHAO L, et al. Systems biology of dry eye: unraveling molecular mechanisms through multi-omics integration[J]. Ocul Surf, 2025, 36: 25-40. [10] 蒋小曼, 郭银宁, 缪雪怡, 等. 基于非靶向代谢组学的老年胃癌病人术前衰弱与代谢综合征代谢特征研究[J]. 检验医学与临床, 2024, 21(4): 437-443. [11] LOZUPONE M, SOLFRIZZI V, SARDONE R, et al. The epigenetics of frailty[J]. Epigenomics, 2024, 16(3): 189-202. [12] GAO X, ZHANG Y, SAUM K U, et al. Tobacco smoking and smoking-related DNA methylation are associated with the development of frailty among older adults[J]. Epigenetics, 2017, 12(2): 149-156. [13] COLLERTON J, GAUTREY H E, VAN OTTERDIJK S D, et al. Acquisition of aberrant DNA methylation is associated with frailty in the very old: findings from the Newcastle 85+ Study[J]. Biogerontology, 2014, 15(4): 317-328. [14] LI X, DELERUE T, SCHÖTTKER B, et al. Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults[J]. Nat Commun, 2022, 13(1): 5269. [15] BOUNTZIOUKA V, NELSON C P, CODD V, et al. Association of shorter leucocyte telomere length with risk of frailty[J]. J Cachexia Sarcopenia Muscle, 2022, 13(3): 1741-1751. [16] SAUM K U, DIEFFENBACH A K, MÜEZZINLER A, et al. Frailty and telomere length: cross-sectional analysis in 3537 older adults from the ESTHER cohort[J]. Exp Gerontol, 2014, 58: 250-255. [17] 徐婷, 季明辉, 陈一萌, 等. 基于多组学的老年衰弱人群生物标志物研究[J]. 中国全科医学, 2023, 26(23): 2871-2876. [18] AROSIO B, PICCA A. The biological roots of the sex-frailty paradox[J]. Exp Gerontol, 2024, 198: 112619. [19] PACHECO N L, NOREN HOOTEN N, ZHANG Y, et al. Sex-specific transcriptome differences in a middle-aged frailty cohort[J]. BMC Geriatr, 2022, 22(1): 651. [20] PRINCE C S, NOREN HOOTEN N, MODE N A, et al. Frailty in middle age is associated with frailty status and race-specific changes to the transcriptome[J]. Aging:Albany NY, 2019, 11(15): 5518-5534. [21] BARITELLO O, SÜNDERMANN S H, ESPINOSA-GARNICA K, et al. Transcriptomic signature of frailty in older patients with cardiovascular disease undergoing cardiac surgery or TAVI[J]. J Cachexia Sarcopenia Muscle, 2025, 16(3): e13846. [22] LIU F, AUSTIN T R, SCHRACK J A, et al. Late-life plasma proteins associated with prevalent and incident frailty: a proteomic analysis[J]. Aging Cell, 2023, 22(11): e13975. [23] XU J, LIU J, TANG J, et al. Plasma proteomic signature of risk and prognosis of frailty in the UK Biobank[J]. Geroscience, 2025, 47(2): 2365-2381. [24] LIU F, SCHRACK J A, WALSTON J, et al. Mid-life plasma proteins associated with late-life prefrailty and frailty: a proteomic analysis[J]. Geroscience, 2024, 46(5): 5247-5265. [25] MITCHELL A, MALMGREN L, BARTOSCH P, et al. Pro-inflammatory proteins associated with frailty and its progression—a longitudinal study in community-dwelling women[J]. J Bone Miner Res, 2023, 38(8): 1076-1091. [26] DENFELD Q E, PAVLOVIC N V, LEE C S, et al. Plasma proteomic biomarkers of physical frailty in heart failure: a propensity score matched discovery-based pilot study[J]. BMC Cardiovasc Disord, 2025, 25(1): 284. [27] GUILLOTIN S, FULZELE A, VALLET A, et al. Cerebrospinal fluid proteomic profile of frailty: results from the PROLIPHYC cohort[J]. Aging Cell, 2024, 23(7): e14168. [28] ZHU D, WU J Z, GRIFFIN P, et al. Metabolomics biomarkers of frailty: a longitudinal study of aging female and male mice[J]. NPJ Aging,2025,11(1):40. [29] KIM S J, JO Y, PARK S J, et al. Metabolomic profiles of ovariectomized mice and their associations with body composition and frailty-related parameters in postmenopausal women[J]. J Endocrinol Invest, 2024, 47(10): 2551-2563. [30] SHIDA T, HATANAKA S, KOJIMA N, et al. Association of serum metabolites with frailty phenotype and its components: a cross-sectional case-control study[J]. Biogerontology, 2024, 26(1): 21. [31] SHEKARCHIAN A, BANDARIAN F, HADIZADEH A, et al. Exploring the metabolomics profile of frailty- a systematic review[J]. J Diabetes Metab Disord, 2024, 23(1): 289-303. [32] ZHOU M, SUN W, CHU J, et al. Identification of novel biomarkers for frailty diagnosis via serum amino acids metabolomic analysis using UPLC-MS/MS[J]. Proteomics Clin Appl, 2024, 18(3): e2300035. [33] MARRON M M, YAO S, SHAH R V, et al. Metabolomic characterization of vigor to frailty among community-dwelling older Black and White men and women[J]. Geroscience, 2024, 46(2): 2371-2389. [34] WESTBROOK R, ZHANG C, YANG H, et al. Metabolomics-based identification of metabolic dysfunction in frailty[J]. J Gerontol A Biol Sci Med Sci, 2022, 77(12): 2367-2372. [35] KUIPER L M, SUSAN J PICAVET H, LISET RIETMAN M, et al. Advanced glycation end-products and metabolomics are independently associated with frailty: the longitudinal doetinchem cohort study[J]. J Gerontol A Biol Sci Med Sci, 2025, 80(6): glae272. [36] BRUNELLI L, DAVIN A, SESTITO G, et al. Plasmatic hippuric acid as a hallmark of frailty in an Italian cohort: the mediation effect of fruit-vegetable intake[J]. J Gerontol A Biol Sci Med Sci, 2021, 76(12): 2081-2089. [37] CHEN S Y, RONG X Y, SUN X Y, et al. A novel trimethylamine oxide-induced model implicates gut microbiota-related mechanisms in frailty[J]. Front Cell Infect Microbiol, 2022, 12: 803082. [38] PU Y, SUN Z, ZHANG H, et al. Gut microbial features and circulating metabolomic signatures of frailty in older adults[J]. Nat Aging, 2024, 4(9): 1249-1262. |