Practical Geriatrics ›› 2022, Vol. 36 ›› Issue (1): 95-99.doi: 10.3969/j.issn.1003-9198.2022.01.025
Previous Articles Next Articles
Received:
2021-10-20
Online:
2022-01-20
Published:
2022-01-25
CLC Number:
[1] Hyman B T, Holtzman D M. Apolipoprotein E levels and Alzheimer risk[J]. Ann Neurol, 2015, 77(2): 204-205. [2] PASSAMONTI L, TSVETANOV K A, JONES P S, et al. Neuroinflammation and functional connectivity in Alzheimer’s disease: interactive influences on cognitive performance[J]. J Neurosci, 2019, 39(36): 7218-7226. [3] MAMMANA S, FAGONE P, CAVALLI E, et al. The role of macrophages in neuroinflammatory and neurodegenerative pathways of Alzheimer’s disease, amyotrophic lateral sclerosis, and multiple sclerosis: pathogenetic cellular effectors and potential therapeutic targets[J]. Int J Mol Sci, 2018, 19(3):831. [4] PRINZ M, PRILLER J, SISODIA S S, et al. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration[J]. Nat Neurosci, 2011, 14(10): 1227-1235. [5] WANG J, GU B J, MASTERS C L, et al. A systemic view of Alzheimer disease-insights from amyloid-β metabolism beyond the brain[J]. Nat Rev Neurol, 2017, 13(10): 612-623. [6] JONES M K, NAIR A, GUPTA M. Mast cells in neurodegenerative disease[J]. Front Cell Neurosci, 2019, 13: 171. [7] JAIRANI P S, ASWATHY P M, KRISHNAN D, et al. Apolipoprotein E polymorphism and oxidative stress in peripheral blood-derived macrophage-mediated amyloid-beta phagocytosis in Alzheimer’s disease patients[J]. Cell Mol Neurobiol, 2019, 39(3): 355-369. [8] LEE J W, LEE I H, IIMURA T, et al. Two macrophages, osteoclasts and microglia: from development to pleiotropy[J]. Bone Res, 2021, 9(1): 11. [9] VAN DER KANT R, GOLDSTEIN L S B, OSSENKOPPELE R. Amyloid-β-independent regulators of tau pathology in Alzheimer disease[J]. Nat Rev Neurosci, 2020, 21(1): 21-35. [10] MORRIS G P, CLARK I A, VISSEL B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease[J]. Acta Neuropathol Commun, 2014, 2: 135. [11] LI F, ETELEEB A, BUCHSER W, et al. Weakly activated core inflammation pathways were identified as a central signaling mechanism contributing to the chronic neurodegeneration in Alzheimer’s disease[J]. BioRxiv, 2021.doi:10.1101/2021.08.30.458295. [12] KINNEY J W, BEMILLER S M, MURTISHAW A S, et al. Inflammation as a central mechanism in Alzheimer’s disease[J]. Alzheimers Dement (NY), 2018, 4: 575-590. [13] SUN X, CHEN W D, WANG Y D. β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease[J]. Front Pharmacol, 2015, 6: 221. [14] MUNAWARA U, CATANZARO M, XU W, et al. Hyperactivation of monocytes and macrophages in MCI patients contributes to the progression of Alzheimer’s disease[J]. Immun Ageing, 2021, 18(1): 29. [15] RENTSENDORJ A, SHEYN J, FUCHS D T, et al. A novel role for osteopontin in macrophage-mediated amyloid-β clearance in Alzheimer’s models[J]. Brain Behav Immun, 2018, 67: 163-180. [16] PICCIONI G, MANGO D, SAIDI A, et al. Targeting microglia-synapse interactions in Alzheimer’s disease[J]. Int J Mol Sci, 2021, 22(5):2342. [17] MARTINEZ F O, GORDON S. The M1 and M2 paradigm of macrophage activation: time for reassessment[J]. F1000Prime Rep, 2014, 6: 13. [18] KIM S Y, NAIR M G. Macrophages in wound healing: activation and plasticity[J]. Immunol Cell Biol, 2019, 97(3): 258-267. [19] DA MESQUITA S, KIPNIS J. DAMed in (Trem) 2 Steps[J]. Cell, 2017, 169(7): 1172-1174. [20] YUAN P, CONDELLO C, KEENE C D, et al. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy[J]. Neuron, 2016, 90(4): 724-739. [21] NI J, WU Z, MENG J, et al. An impaired intrinsic microglial clock system induces neuroinflammatory alterations in the early stage of amyloid precursor protein knock-in mouse brain[J]. J Neuroinflammation, 2019, 16(1): 173. [22] SINGH-MANOUX A, DUGRAVOT A, BRUNNER E, et al. Interleukin-6 and C-reactive protein as predictors of cognitive decline in late midlife[J]. Neurology, 2014, 83(6): 486-493. [23] FINUCANE O M, SUGRUE J, RUBIO-ARAIZ A, et al. The NLRP3 inflammasome modulates glycolysis by increasing PFKFB3 in an IL-1β-dependent manner in macrophages[J]. Sci Rep, 2019, 9(1): 4034. [24] ISING C, VENEGAS C, ZHANG S, et al. NLRP3 inflammasome activation drives tau pathology[J]. Nature, 2019, 575(7784): 669-673. [25] SEMPLE B D, KOSSMANN T, MORGANTI-KOSSMANN M C. Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks[J]. J Cereb Blood Flow Metab, 2010, 30(3): 459-473. [26] SALMINEN A. Hypoperfusion is a potential inducer of immunosuppressive network in Alzheimer’s disease[J]. Neurochem Int, 2021, 142: 104919. [27] SCHLEPCKOW K, MONROE K M, KLEINBERGER G, et al. Enhancing protective microglial activities with a dual function TREM2 antibody to the stalk region[J]. EMBO Mol Med, 2020, 12(4): e11227. [28] PONS V, LÉVESQUE P, PLANTE M M, et al. Conditional genetic deletion of CSF1 receptor in microglia ameliorates the physiopathology of Alzheimer’s disease[J]. Alzheimer’s Res Ther, 2021, 13(1): 8. [29] MRDJEN D, PAVLOVIC A, HARTMANN F J, et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease[J]. Immunity, 2018, 48(2):380-395. [30] WYNN T A, CHAWLA A, POLLARD J W. Macrophage biology in development, homeostasis and disease[J]. Nature, 2013, 496(7446): 445-455. [31] MU X, LI Y, FAN G C. Tissue-resident macrophages in the control of infection and resolution of inflammation[J]. Shock, 2021, 55(1): 14-23. [32] YUNNA C, MENGRU H, LEI W, et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020, 877: 173090. [33] GUO H, ZHAO Z, ZHANG R, et al. Monocytes in the peripheral clearance of amyloid-β and Alzheimer’s disease[J]. J Alzheimers Dis, 2019, 68(4): 1391-1400. [34] KOZYREV N, ALBERS S, YANG J, et al. Infiltrating hematogenous macrophages aggregate around β-amyloid plaques in an age-and sex-dependent manner in a mouse model of Alzheimer disease[J]. J Neuropathol Exp Neurol, 2020, 79(11): 1147-1162. [35] KOIZUMI T, KERKHOFS D, MIZUNO T, et al. Vessel-associated immune cells in cerebrovascular diseases: from perivascular macrophages to vessel-associated microglia[J]. Front Neurosci, 2019, 13: 1291. [36] FARACO G, PARK L, ANRATHER J, et al. Brain perivascular macrophages: characterization and functional roles in health and disease[J]. J Mol Med (Berl), 2017, 95(11): 1143-1152. [37] XU L, PAN C L, WU X H, et al. Inhibition of Smad3 in macrophages promotes Aβ efflux from the brain and thereby ameliorates Alzheimer’s pathology[J]. Brain Behav Immun, 2021, 95: 154-167. [38] PIMENOVA A A, HERBINET M, GUPTA I, et al. Alzheimer’s-associated PU.1 expression levels regulate microglial inflammatory response[J]. Neurobiol Dis, 2021, 148: 105217. [39] ZHANG N, CUI Y, LI Y, et al. A novel role of nogo proteins: regulating macrophages in inflammatory disease[J]. Cell Molneurobiol, 2021.doi: 10.1007/S10571-021-01124-0. [40] ZHENG H, JIA L, LIU C C, et al. TREM2 promotes microglial survival by activating wnt/β-catenin pathway[J]. J Neurosci, 2017, 37(7): 1772-1784. |
[1] | . [J]. Practical Geriatrics, 2024, 38(10): 979-982. |
[2] | GU Chonghuai, XIANG Xuejun, ZHENG Yuanxi, QIAO Rui, LIN Song. Efficacy of dapagliflozin in elderly patients undergoing coronary intervention with type 2 diabetes mellitus and ejection fraction reduced heart failure [J]. Practical Geriatrics, 2024, 38(10): 1025-1029. |
[3] | LIU Jin, HUANG Yanqiu, ZHU Yi, ZHUO Lili. Effects of sacubitril valsartan sodium in elderly patients with chronic heart failure [J]. Practical Geriatrics, 2024, 38(10): 1030-1033. |
[4] | XU Shouyong, YUAN Yong. Study on feasibility of dual-low-dose CT coronary angiography in elderly patients [J]. Practical Geriatrics, 2024, 38(10): 1054-1058. |
[5] | LIU Lin, WU Qing, ZHANG Jing, MAO Fangying, YU Lu, REN Yiting, FANG Ting. Status and influencing factors of symptom perception in elderly patients with heart failure [J]. Practical Geriatrics, 2024, 38(5): 461-437. |
[6] | LIU Qianhui, YAO Zijun, HE Yuli, XU Yunfan, WU Jun. Effects of HbA1c level on cardiac structure and function in elderly patients with type 2 diabetes mellitus and chronic heart failure [J]. Practical Geriatrics, 2024, 38(5): 491-437. |
[7] | ZHANG Lili, LI Jing, DING Linfeng, SUN Jingxian, CAI Jingbo. Predictive value of carotid atherosclerosis plaque for ischemic stroke events in patients with nonvalvular atrial fibrillation [J]. Practical Geriatrics, 2024, 38(3): 236-239. |
[8] | ZHA Zhimin, LIU Huan, WANG Xiangming, LI Qiushuang, GUO Yan. Effect of cardiac valve calcification on prognosis of elderly patients with coronary heart disease [J]. Practical Geriatrics, 2024, 38(3): 245-250. |
[9] | . [J]. Practical Geriatrics, 2024, 38(3): 308-311. |
[10] | CHENG Qing, XU Yan, CHEN Guofei, DENG Xinyue. Correlation of serum angiotensin Ⅱ and nitric oxide levels with cognitive dysfunction in elderly patients with chronic heart failure [J]. Practical Geriatrics, 2024, 38(2): 132-135. |
[11] | ZHANG Ying, XIE Ling, YE Jiaqi, QIANG Wenhui, YAN Xiaoyun, JIANG Ying, ZHANG Qing. Correlation between laminin and major adverse cardiovascular events in elderly patients with acute myocardial infarction [J]. Practical Geriatrics, 2024, 38(2): 149-151. |
[12] | REN Li-yan. Correlation between serum cholinesterase and ventricular remodeling in elderly patients with heart failure [J]. Practical Geriatrics, 2023, 37(12): 1238-1241. |
[13] | . [J]. Practical Geriatrics, 2023, 37(12): 1270-1273. |
[14] | LU Hao, DENG Hui, WANG Chun, DAI Yang, WANG Qin, WANG Qing. Characteristics of cardiopulmonary function, exercise endurance, and the levels of NT-proBNP and TNT in elderly patients with stable chronic heart failure [J]. Practical Geriatrics, 2023, 37(11): 1138-1142. |
[15] | YANG Xue, NING Chun, ZHAO Juan, HAO Jing-bo, YANG Rong-li. Diagnostic value of growth differentiation factor 15 and cytokines in elderly patients with coronary heart disease complicated with frailty [J]. Practical Geriatrics, 2023, 37(10): 1009-1013. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|