[1] YANG Y, XIAO M, LENG L, et al. A systematic review and meta-analysis of the prevalence and correlation of mild cognitive impairment in sarcopenia[J]. J Cachexia Sarcopenia Muscle, 2023, 14(1): 45-56. [2] JIA J, HU J, HUO X, et al. Effects of vitamin D supplementation on cognitive function and blood Aβ-related biomarkers in older adults with Alzheimer’s disease: a randomised, double-blind, placebo-controlled trial[J]. J Neurol Neurosurg Psychiatry, 2019, 90(12): 1347-1352. [3] 杨文丽, 蒋倩雯, 李菲卡, 等. 肌少症与认知障碍的共同生物标志物研究[J]. 中华老年多器官疾病杂志, 2022, 21(6): 460-463. [4] O’TOOLE P W, JEFFERY I B. Microbiome-health interactions in older people[J]. Cell Mol Life Sci, 2018, 75(1): 119-128. [5] THEVARANJAN N, PUCHTA A, SCHULZ C, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction[J]. Cell Host Microbe, 2017, 21(4): 455-466.e4. [6] TICINESI A, TANA C, NOUVENNE A. The intestinal microbiome and its relevance for functionality in older persons[J]. Curr Opin Clin Nutr Metab Care, 2019, 22(1): 4-12. [7] SHOKRI-MASHHADI N, NAVAB F, ANSARI S, et al. A meta-analysis of the effect of probiotic administration on age-related sarcopenia[J]. Food Sci Nutr, 2023, 11(9): 4975-4987. [8] HANDAJANI Y S, HENGKY A, SCHRÖDER-BUTTERFILL E, et al. Probiotic supplementation improved cognitive function in cognitively impaired and healthy older adults: a systematic review of recent trials[J]. Neurol Sci, 2023, 44(4): 1163-1169. [9] CASPANI G, SWANN J. Small talk: microbial metabolites involved in the signaling from microbiota to brain[J]. Curr Opin Pharmacol, 2019, 48: 99-106. [10] MARUTA H, YAMASHITA H. Acetic acid stimulates G-protein-coupled receptor GPR43 and induces intracellular calcium influx in L6 myotube cells[J]. PLoS One, 2020, 15(9): e0239428. [11] LARSSON L, DEGENS H, LI M, et al. Sarcopenia: aging-related loss of muscle mass and function[J]. Physiol Rev, 2019, 99(1): 427-511. [12] WANG L, JIA Y, ROGERS H, et al. Erythropoietin contributes to slow oxidative muscle fiber specification via PGC-1α and AMPK activation[J]. Int J Biochem Cell Biol, 2013, 45(7): 1155-1164. [13] DUCHARME J B, FENNEL Z J, MCKENNA Z J, et al. Stimulated myotube contractions regulate membrane-bound and soluble TLR4 to prevent LPS-induced signaling and myotube atrophy in skeletal muscle cells[J]. Am J Physiol Cell Physiol, 2023, 325(1): C300-C313. [14] DI BENEDETTO S, MÜLLER L, WENGER E, et al. Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions[J]. Neurosci Biobehav Rev, 2017, 75: 114-128. [15] VAN DER HEE B, WELLS J M. Microbial regulation of host physiology by short-chain fatty acids[J]. Trends Microbiol, 2021, 29(8): 700-712. [16] LI C Y, CHEN X L, ZHANG D, et al. Structural mechanism for bacterial oxidation of oceanic trimethylamine into trimethylamine N-oxide[J]. Mol Microbiol, 2017, 103(6): 992-1003. [17] FENNEMA D, PHILLIPS I R, SHEPHARD E A. Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease[J]. Drug Metab Dispos, 2016, 44(11):1839-1850. [18] HU X, ZHANG Y, GU C, et al. TMAO promotes dementia progression by mediating the PI3K/Akt/mTOR pathway[J]. Tissue Cell, 2023, 81: 102034. [19] 张文博. 氧化三甲胺通过脑肠轴调节阿尔茨海默病认知功能的作用机制[D]. 重庆: 重庆医科大学, 2023. [20] XIE H, JIANG J, CAO S, et al. The role of gut microbiota-derived trimethylamine N-oxide in the pathogenesis and treatment of mild cognitive impairment[J]. Int J Mol Sci, 2025, 26(3): 1373. [21] JIANG S, SHUI Y, CUI Y, et al. Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin II-induced hypertension[J]. Redox Biol, 2021, 46: 102115. [22] LANZ M, JANEIRO M H, MILAGRO F I, et al. Trimethylamine N-oxide (TMAO) drives insulin resistance and cognitive deficiencies in a senescence accelerated mouse model[J]. Mech Ageing Dev, 2022, 204: 111668. [23] MO X, CHENG R, SHEN L, et al. High-fat diet induces sarcopenic obesity in natural aging rats through the gut-trimethylamine N-oxide-muscle axis[J]. J Adv Res, 2025, 70: 405-422. [24] RAMIREDDY L, TSEN H Y, CHIANG Y C, et al. Molecular identification and selection of probiotic strains able to reduce the serum TMAO level in mice challenged with choline[J]. Foods, 2021, 10(12): 2931. [25] SKELLY A N, SATO Y, KEARNEY S, et al. Mining the microbiota for microbial and metabolite-based immunotherapies[J]. Nat Rev Immunol, 2019, 19(5): 305-323. [26] THOMAS C, PELLICCIARI R, PRUZANSKI M, et al. Targeting bile-acid signalling for metabolic diseases[J]. Nat Rev Drug Discov, 2008, 7(8): 678-693. [27] CAMPOS F, ABRIGO J, AGUIRRE F, et al. Sarcopenia in a mice model of chronic liver disease: role of the ubiquitin-proteasome system and oxidative stress[J]. Pflugers Arch, 2018, 470(10): 1503-1519. [28] CAMARRI E, FICI F, MARCOLONGO R. Influence of chenodeoxycholic acid on serum triglycerides in patients with primary hypertriglyceridemia[J]. Int J Clin Pharmacol Biopharm, 1978, 16(11): 523-526. [29] ROURKE J L, HU Q, SCREATON R A. AMPK and friends: central regulators of β cell biology[J]. Trends Endocrinol Metab, 2018, 29(2): 111-122. [30] YOSHIDA T, DELAFONTAINE P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy[J]. Cells, 2020, 9(9): 1970. [31] CIPRIANI S, MENCARELLI A, PALLADINO G, et al. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats[J]. J Lipid Res, 2010, 51(4): 771-784. [32] ARAI Y, PARK H, PARK S, et al. Bile acid-based dual-functional prodrug nanoparticles for bone regeneration through hydrogen peroxide scavenging and osteogenic differentiation of mesenchymal stem cells[J]. J Control Release, 2020, 328: 596-607. [33] ZHANGEROLAMO L, VETTORAZZI J F, ROSA L R O, et al. The bile acid TUDCA and neurodegenerative disorders: An overview[J]. Life Sci, 2021, 272: 119252. [34] KHARE A, GAUR S. Cholesterol-lowering effects of Lactobacillus species[J]. Curr Microbiol, 2020, 77(4): 638-644. [35] STALEY C, WEINGARDEN A R, KHORUTS A, et al. Interaction of gut microbiota with bile acid metabolism and its influence on disease states[J]. Appl Microbiol Biotechnol, 2017, 101(1): 47-64. [36] CHEN R, CHEN X, GAO J. 3-O-acylated bile acids: disrupters or harmonizers of metabolism?[J]. Trends Mol Med, 2025, 31(2): 103-105. [37] LAWRENCE T. The nuclear factor NF-kappaB pathway in inflammation[J]. Cold Spring Harb Perspect Biol, 2009, 1(6): a001651. [38] THOMA A, LIGHTFOOT A P. NF-κB and inflammatory cytokine signalling: role in skeletal muscle atrophy[J]. Adv Exp Med Biol, 2018, 1088: 267-279. [39] JIN X, LIU M Y, ZHANG D F, et al. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway[J]. CNS Neurosci Ther, 2019, 25(5): 575-590. [40] JEONG Y J, KIM J H, JUNG Y J, et al. KL-biome (postbiotic formulation of lactiplantibacillus plantarum KM2) improves dexamethasone-induced muscle atrophy in mice[J]. Int J Mol Sci, 2024, 25(13): 7499. [41] WOO J Y, GU W, KIM K A, et al. Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a D-galactose-induced accelerated aging mouse model[J]. Anaerobe, 2014, 27:22-26. [42] BAEK J S, SHIN Y J, MA X, et al. Bifidobacterium bifidum and Lactobacillus paracasei alleviate sarcopenia and cognitive impairment in aged mice by regulating gut microbiota-mediated AKT, NF-κB, and FOXO3a signaling pathways[J]. Immun Ageing, 2023, 20(1):56. [43] RODRÍGUEZ S P, HERRERA A L, PARRA J E. Gene expression of pro-inflammatory (IL-8, IL-18, TNF-α, and IFN-γ) and anti-inflammatory (IL-10) cytokines in the duodenum of broiler chickens exposed to lipopolysaccharides from Escherichia coli and Bacillus subtilis[J]. Vet World, 2023, 16(3): 564-570. [44] MANCUSO C, SANTANGELO R. Alzheimer’s disease and gut microbiota modifications: the long way between preclinical studies and clinical evidence[J]. Pharmacol Res, 2018, 129: 329-336. [45] 李姝敏, 徐哲荣. 肠道微生态改变在肌少症发病机制中的作用[J]. 中华老年病研究电子杂志, 2018, 5(1): 13-16. [46] YAN F, CAO H, COVER T L, et al. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth[J]. Gastroenterology, 2007, 132(2): 562-575. [47] SETH A, YAN F, POLK D B, et al. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294(4): G1060-G1069. [48] MIYAUCHI E, MORITA H, TANABE S. Lactobacillus rhamnosus alleviates intestinal barrier dysfunction in part by increasing expression of zonula occludens-1 and myosin light-chain kinase in vivo[J]. J Dairy Sci, 2009, 92(6): 2400-2408. [49] LEE C C, LIAO Y C, LEE M C, et al. Lactobacillus plantarum TWK10 attenuates aging-associated muscle weakness, bone loss, and cognitive impairment by modulating the gut microbiome in mice[J]. Front Nutr, 2021, 8: 708096. [50] HUANG W C, LEE M C, LEE C C, et al. Effect of Lactobacillus plantarum TWK10 on exercise physiological adaptation, performance, and body composition in healthy humans[J]. Nutrients, 2019, 11(11): 2836. [51] MENNIGEN R, NOLTE K, RIJCKEN E, et al. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression andpreventing apoptosis in a murine model of colitis[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 296(5): G1140-G1149. |