[1] CRUZ-JENTOFT A J, BAHAT G, BAUER J, et al. Sarcopenia: revised European consensus on definition and diagnosis[J]. Age Ageing, 2019, 48(1): 16-31. [2] YUAN S, LARSSON S C. Epidemiology of sarcopenia: prevalence, risk factors, and consequences[J]. Metabolism, 2023, 144: 155533. [3] FENG L, GAO Q, HU K, et al. Prevalence and risk factors of sarcopenia in patients with diabetes: a meta-analysis[J]. J Clin Endocrinol Metab, 2022, 107(5): 1470-1483. [4] SHACHAR S S, WILLIAMS G R, MUSS H B, et al. Prognostic value of sarcopenia in adults with solid tumours: a meta-analysis and systematic review[J]. Eur J Cancer, 2016, 57: 58-67. [5] CHO M R, LEE S, SONG S K. A review of sarcopenia pathophysiology, diagnosis, treatment and future direction[J]. J Korean Med Sci, 2022, 37(18): e146. [6] CHEN T P, KAO H H, OGAWA W, et al. The Asia-Oceania consensus: definitions and diagnostic criteria for sarcopenic obesity[J]. Obes Res Clin Pract, 2025, 19(3): 185-192. [7] NAJM A, NICULESCU A G, GRUMEZESCU A M, et al. Emerging therapeutic strategies in sarcopenia: an updated review on pathogenesis and treatment advances[J]. Int J Mol Sci, 2024, 25(8): 4300. [8] 冉姝, 何笑, 蒋自璇, 等. 全基因组关联分析显示基因ANXA8和C10orf11为影响肌少症的候选基因[J]. 上海理工大学学报, 2020, 42(3): 305-310. [9] YANG F, ZHANG X, DAI W, et al. Multivariate genome-wide analysis of sarcopenia reveals genetic comorbidity with urological diseases[J]. Exp Gerontol, 2025, 206: 112783. [10] JONES G, TRAJANOSKA K, SANTANASTO A J, et al. Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women[J]. Nat Commun, 2021, 12(1): 654. [11] WU J, CHEN X, LI R, et al. Identifying genetic determinants of sarcopenia-related traits: a Mendelian randomization study of druggable genes[J]. Metabolism, 2024, 160: 155994. [12] FURUTANI M, SUGANUMA M, AKIYAMA S, et al. RNA-sequencing analysis identification of potential biomarkers for diagnosis of sarcopenia[J]. J Gerontol A Biol Sci Med Sci, 2023, 78(11): 1991-1998. [13] XU Q, ZHAO Q G, MA X L, et al. Exome-wide sequencing study identified genetic variants associated with sarcopenic obesity[J]. J Gerontol A Biol Sci Med Sci, 2024, 79(4): glae025. [14] RAN S, HE X, JIANG Z X, et al. Whole-exome sequencing and genome-wide association studies identify novel sarcopenia risk genes in Han Chinese[J]. Mol Genet Genomic Med, 2020, 8(8): e1267. [15] LEE J, KANG H. Role of microRNAs and long non-coding RNAs in sarcopenia[J]. Cells, 2022, 11(2): 187. [16] VOISIN S, JACQUES M, LANDEN S, et al. Meta-analysis of genome-wide DNA methylation and integrative omics of age in human skeletal muscle[J]. J Cachexia Sarcopenia Muscle, 2021, 12(4): 1064-1078. [17] KIM S, GU B, SO C Y, et al. Cdkn1a silencing restores myoblast differentiation by inducing selective apoptosis in senescent cells[J]. Cell Mol Biol Lett, 2025, 30(1): 53. [18] PEREZ K, CIOTLOS S, MCGIRR J, et al. Single nuclei profiling identifies cell specific markers of skeletal muscle aging, frailty, and senescence[J]. Aging, 2022, 14(23): 9393-9422. [19] LI L, GUAN X, HUANG Y, et al. Identification of key genes and signaling pathways based on transcriptomic studies of aerobic and resistance training interventions in sarcopenia in SAMP8 mice[J]. Sports Med Health Sci, 2024, 6(4): 358-369. [20] FOCHI S, GIURIATO G, DE SIMONE T, et al. Regulation of microRNAs in satellite cell renewal, muscle function, sarcopenia and the role of exercise[J]. Int J Mol Sci, 2020, 21(18): 6732. [21] GUO M, YAO J, LI J, et al. Irisin ameliorates age-associated sarcopenia and metabolic dysfunction[J]. J Cachexia Sarcopenia Muscle, 2023, 14(1): 391-405. [22] HAN S, ZHAO X, YU C, et al. Nestin regulates autophagy-dependent ferroptosis mediated skeletal muscle atrophy by ubiquitinating MAP 1LC3B[J]. J Cachexia Sarcopenia Muscle, 2025, 16(2): e13779. [23] KIM H, RANJIT R, CLAFLIN D R, et al. Unacylated ghrelin protects against age-related loss of muscle mass and contractile dysfunction in skeletal muscle[J]. Aging Cell, 2024, 23(12): e14323. [24] CROMBIE E M, KIM S, ADAMSON S, et al. Activation of eIF4E-binding-protein-1 rescues mTORC1-induced sarcopenia by expanding lysosomal degradation capacity[J]. J Cachexia Sarcopenia Muscle, 2023, 14(1): 198-213. [25] LIU G, JIANG S, XIE W, et al. Biomarkers for sarcopenia, muscle mass, muscle strength, and physical performance: an umbrella review[J]. J Transl Med, 2025, 23(1): 650. [26] HAM D J, BÖRSCH A, LIN S, et al. The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia[J]. Nat Commun, 2020, 11(1): 4510. [27] UEZUMI A, IKEMOTO-UEZUMI M, ZHOU H, et al. Mesenchymal Bmp3b expression maintains skeletal muscle integrity and decreases in age-related sarcopenia[J]. J Clin Invest, 2021, 131(1): e139617. [28] MA Y, LIU Y, ZHENG J, et al. Clinical significance of serum irisin, 25(OH)D3 and albumin in older adults with chronic disease and sarcopenia[J]. Aging Clin Exp Res, 2025, 37(1): 153. [29] ERDOGAN K, YAVUZ VEIZI B G, DEMIRCI S, et al. The association between serum zonulin levels and sarcopenia in older adults: how does intestinal permeability affect sarcopenia?[J]. Clin Nutr, 2025, 51: 206-211. [30] JIAO X F, MU G J, ZHAO W Y, et al. Dyrk1b as a potential biomarker for sarcopenia in older adults[J]. BMC Geriatr, 2025, 25(1): 278. [31] CHEN Y Y, KAO T W, CHIU Y L, et al. Association between interleukin-12 and sarcopenia[J]. J Inflamm Res, 2021, 14: 2019-2029. [32] SONG Q, ZHU Y, LIU X, et al. Changes in the gut microbiota of patients with sarcopenia based on 16S rRNA gene sequencing: a systematic review and meta-analysis[J]. Front Nutr, 2024, 11: 1429242. [33] YIN P, CHEN M, RAO M, et al. Deciphering immune landscape remodeling unravels the underlying mechanism for synchronized muscle and bone aging[J]. Adv Sci, 2024, 11(5): e2304084. |