实用老年医学 ›› 2024, Vol. 38 ›› Issue (12): 1292-1296.doi: 10.3969/j.issn.1003-9198.2024.12.023
石天兵, 徐红, 王羚钰
收稿日期:
2024-01-28
出版日期:
2024-12-20
发布日期:
2024-12-19
通讯作者:
徐红,Email:1766332511@qq.com
Received:
2024-01-28
Online:
2024-12-20
Published:
2024-12-19
摘要: 肌少症是一种骨骼肌进行性减少性疾病,其主要特征是肌肉进行性萎缩和无力,严重影响老年人的生活质量。近年来的研究表明,肾素血管紧张素醛固酮系统(RAAS)与肌少症之间存在一定的相关性。RAAS在肌少症的发生、发展中起着重要作用,其中血管紧张素转换酶抑制剂、醛固酮受体拮抗剂在一定程度上对预防肌少症的发生有积极作用;醛固酮、血管紧张素转换酶、细胞内活性氧水平以及慢性炎症在一定程度上与肌肉质量和(或)力量呈负相关;胰岛素样生长因子-1水平与肌肉质量或力量呈正相关。本综述系统、全面地探讨了RAAS对肌少症的影响,简述RAAS的不同环节与肌少症的相关性,以及阻断RAAS改善肌少症的机制,以期为我国老年人肌少症的预防提供一定参考。
中图分类号:
石天兵, 徐红, 王羚钰. 肾素血管紧张素醛固酮系统与肌少症的相关机制研究[J]. 实用老年医学, 2024, 38(12): 1292-1296.
[1] CRUZ-JENTOFT A J, SAYER A A. Sarcopenia[J]. Lancet, 2019, 393(10191):2636-2646. [2] DAO T, GREEN A E, KIM Y A, et al. Sarcopenia and muscle aging: a brief overview[J]. Endocrinol Metab: Seoul, 2020, 35(4): 716-732. [3] LARSSON L, GRIMBY G, KARLSSON J. Muscle strength and speed of movement in relation to age and muscle morphology[J]. J Appl Physiol Respir Environ Exerc Physiol, 1979, 46(3): 451-456. [4] CARTER C S, GIOVANNINI S, SEO D O, et al. Differential effects of enalapril and losartan on body composition and indices of muscle quality in aged male Fischer 344×Brown Norway rats[J]. Age: Dordr, 2011, 33(2): 167-183. [5] CHEN L K, LIU L K, WOO J, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia[J]. J Am Med Dir Assoc, 2014, 15(2): 95-101. [6] ROSENBERG I H. Sarcopenia: origins and clinical relevance[J]. Clin Geriatr Med, 2011, 27(3): 337-339. [7] KIM S H, SHIN M J, SHIN Y B, et al. Sarcopenia associated with chronic obstructive pulmonary disease[J]. J Bone Metab, 2019, 26(2): 65-74. [8] BUNOUT D, BARRERA G, AVENDAÑO M, et al. Results of a community-based weight-bearing resistance training programme for healthy Chilean elderly subjects[J]. Age Ageing, 2005, 34(1): 80-83. [9] CROWLEY S D, COFFMAN T M. In hypertension, the kidney rules[J]. Curr Hypertens Rep, 2007, 9(2): 148-153. [10] PAN S, WORKER C J, FENG EARLEY Y. The hypothalamus as a key regulator of glucose homeostasis: emerging roles of the brain renin-angiotensin system[J]. Am J Physiol Cell Physiol, 2023, 325(1): C141-C154. [11] MOTTA-SANTOS D, DOS SANTOS R A, OLIVEIRA M, et al. Effects of ACE2 deficiency on physical performance and physiological adaptations of cardiac and skeletal muscle to exercise[J]. Hypertens Res, 2016, 39(7): 506-512. [12] CABELLO-VERRUGIO C, CÓRDOVA G, SALAS J D. Angiotensin II: role in skeletal muscle atrophy[J]. Curr Protein Pept Sci, 2012, 13(6): 560-569. [13] RUSSELL S T, ELEY H, TISDALE M J. Mechanism of attenuation of angiotensin-II-induced protein degradation by insulin-like growth factor-I (IGF-I)[J]. Cell Signal, 2007, 19(7): 1583-1595. [14] BURTON L A, MCMURDO M E, STRUTHERS A D. Mineralocorticoid antagonism: a novel way to treat sarcopenia and physical impairment in older people?[J]. Clin Endocrinol: Oxf, 2011, 75(6):725-729. [15] SUMUKADAS D, STRUTHERS A D, McMurdo M E. Sarcopenia: a potential target for Angiotensin-converting enzyme inhibition?[J]. Gerontology, 2006, 52(4): 237-242. [16] KINUGAWA S, TAKADA S, MATSUSHIMA S, et al. Skeletal muscle abnormalities in heart failure[J]. Int Heart J, 2015, 56(5): 475-484. [17] AL-GOBARI M, AL-AQEEL S, GUEYFFIER F, et al. Effectiveness of drug interventions to prevent sudden cardiac death in patients with heart failure and reduced ejection fraction: an overview of systematic reviews[J]. BMJ Open, 2018, 8(7): e021108. [18] ONDER G, PENNINX B W, BALKRISHNAN R, et al. Relation between use of angiotensin-converting enzyme inhibitors and muscle strength and physical function in older women: an observational study[J]. Lancet, 2002, 359(9310): 926-930. [19] SUMUKADAS D, WITHAM M D, STRUTHERS A D, et al. Effect of perindopril on physical function in elderly people with functional impairment: a randomized controlled trial[J]. CMAJ, 2007, 177(8): 867-874. [20] HENRIKSEN E J, JACOB S. Modulation of metabolic control by angiotensin converting enzyme (ACE) inhibition[J]. J Cell Physiol, 2003, 196(1): 171-179. [21] RIGAT B, HUBERT C, ALHENC-GELAS F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels[J]. J Clin Invest, 1990, 86(4): 1343-1346. [22] MONTGOMERY H, CLARKSON P, BARNARD M, et al. Angiotensin-converting-enzyme gene insertion/deletion polymorphism and response to physical training[J]. Lancet, 1999, 353(9152): 541-545. [23] MAGGIO M, CEDA G P, LAURETANI F, et al. Relation of angiotensin-converting enzyme inhibitor treatment to insulin-like growth factor-1 serum levels in subjects >65 years of age (the InCHIANTI study)[J]. Am J Cardiol, 2006, 97(10): 1525-1529. [24] SAKUMA K, YAMAGUCHI A. Sarcopenia and cachexia: the adaptations of negative regulators of skeletal muscle mass[J]. J Cachexia Sarcopenia Muscle, 2012, 3(2):77-94. [25] HAN Y, RUNGE M S, BRASIER A R. Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-kappa B transcription factors[J]. Circ Res, 1999, 84(6): 695-703. [26] YEO D, KANG C, ZHANG T, et al. Avenanthramides attenuate inflammation and atrophy in muscle cells[J]. J Sport Health Sci, 2019, 8(2): 189-195. [27] BARBIERI M, FERRUCCI L, RAGNO E, et al. Chronic inflammation and the effect of IGF-I on muscle strength and power in older persons[J]. Am J Physiol Endocrinol Metab, 2003, 284(3): E481-E487. [28] BRINK M, WELLEN J, DELAFONTAINE P. Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism[J]. J Clin Invest, 1996, 97(11): 2509-2516. [29] CAPPOLA A R, BANDEEN-ROCHE K, WAND G S, et al. Association of IGF-I levels with muscle strength and mobility in older women[J]. J Clin Endocrinol Metab, 2001, 86(9): 4139-4146. [30] SONG Y H, LI Y, DU J, et al. Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting[J]. J Clin Invest, 2005, 115(2): 451-458. [31] BORST S E, LOWENTHAL D T. Role of IGF-I in muscular atrophy of aging[J]. Endocrine, 1997, 7(1): 61-63. [32] MUSARO A, MCCULLAGH K, PAUL A, et al. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle[J]. Nat Genet, 2001, 27(2): 195-200. [33] TOUYZ R M, TABET F, SCHIFFRIN E L. Redox-dependent signalling by angiotensin II and vascular remodelling in hypertension[J]. Clin Exp Pharmacol Physiol, 2003, 30(11): 860-866. [34] LIVSHITS G, KALINKOVICH A. A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity[J]. Ageing Res Rev, 2023, 86: 101852. [35] DUPONT J, VERCAUTEREN L, AMINI N, et al. Are inflammatory markers associated with sarcopenia-related traits in older adults with sarcopenia?-A cross-sectional analysis of the ENHANce study[J]. Exp Gerontol, 2023, 178: 112196. [36] COHEN H J, PIEPER C F, HARRIS T, et al. The association of plasma IL-6 levels with functional disability in community-dwelling elderly[J]. J Gerontol A Biol Sci Med Sci, 1997, 52(4): M201-M208. [37] FERRUCCI L, HARRIS T B, GURALNIK J M, et al. Serum IL-6 level and the development of disability in older persons[J]. J Am Geriatr Soc, 1999, 47(6): 639-646. [38] KNOWLES L M, WOLTER C, MENGER M D, et al. Activation of the acute-phase response in hemophilia[J]. Thromb Haemost, 2023, 123(9): 867-879. [39] SHOKRI-MASHHADI N, MORADI S, HEIDARI Z, et al. Association of circulating C-reactive protein and high-sensitivity C-reactive protein with components of sarcopenia: a systematic review and meta-analysis of observational studies[J]. Exp Gerontol, 2021, 150: 111330. [40] KIM B J, LEE Y S, LEE S Y, et al. Osteoclast-secreted SLIT3 coordinates bone resorption and formation[J]. J Clin Invest, 2018, 128(4): 1429-1441. [41] BURNISTON J G, SAINI A, TAN L B, et al. Aldosterone induces myocyte apoptosis in the heart and skeletal muscles of rats in vivo[J]. J Mol Cell Cardiol, 2005, 39(2): 395-399. [42] KWAK M K, LEE S E, CHO Y Y, et al. The differential effect of excess aldosterone on skeletal muscle mass by sex[J]. Front Endocrinol: Lausanne, 2019, 10: 195. [43] LEE J Y, KIM D A, CHOI E, et al. Aldosterone inhibits in vitro myogenesis by increasing intracellular oxidative stress via mineralocorticoid receptor[J]. Endocrinol Metab: Seoul, 2021, 36(4): 865-874. [44] MOGI M, KOHARA K, TABARA Y, et al. Correlation between the 24-h urinary angiotensinogen or aldosterone level and muscle mass: Japan shimanami health promoting program study[J]. Hypertens Res, 2018, 41(5): 326-333. [45] FARQUHARSON C A, STRUTHERS A D. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure[J]. Circulation, 2000, 101(6): 594-597. [46] POOLE D C, FERGUSON S K, MUSCH T I, et al. Role of nitric oxide in convective and diffusive skeletal muscle microvascular oxygen kinetics[J]. Nitric Oxide, 2022, 121: 34-44. [47] BAUERSACHS J, HECK M, FRACCAROLLO D, et al. Addition of spironolactone to angiotensin-converting enzyme inhibition in heart failure improves endothelial vasomotor dysfunction: role of vascular superoxide anion formation and endothelial nitric oxide synthase expression[J]. J Am Coll Cardiol, 2002, 39(2): 351-358. [48] AAGAARD N K, ANDERSEN H, VILSTRUP H, et al. Muscle strength, Na, K-pumps, magnesium and potassium in patients with alcoholic liver cirrhosis: relation to spironolactone[J]. J Intern Med, 2002, 252(1): 56-63. [49] GULLESTAD L, DOLVA L O, SØYLAND E, et al. Oral magnesium supplementation improves metabolic variables and muscle strength in alcoholics[J]. Alcohol Clin Exp Res, 1992, 16(5): 986-990. [50] COOPER S A, WHALEY-CONNELL A, HABIBI J, et al. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance[J]. Am J Physiol Heart Circ Physiol, 2007, 293(4): H2009-H2023. [51] ÁBRIGO J, ELORZA A A, RIEDEL C A, et al. Role of oxidative stress as key regulator of muscle wasting during cachexia[J]. Oxid Med Cell Longev, 2018, 2018: 2063179. [52] MECOCCI P, FANÓ G, FULLE S, et al. Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle[J]. Free Radic Biol Med, 1999, 26(3/4): 303-308. |
[1] | 丛晓飞, 李铭麟, 石春来. 老年口腔衰弱与多重用药的关系及干预策略[J]. 实用老年医学, 2024, 38(9): 872-875. |
[2] | 戚嘉萤, 殷曈曈, 王芳芳, 张慧, 王丽. 老年人体力活动水平与肌少症发生风险关系的剂量-反应Meta分析[J]. 实用老年医学, 2024, 38(9): 905-910. |
[3] | 梁杉杉, 梁欢, 杨珊, 刘建凤. 老年T2DM病人肌少症发生与颈动脉粥样硬化的相关性研究[J]. 实用老年医学, 2024, 38(8): 826-830. |
[4] | 汪月, 李振光, 李梦凡, 张金彪, 齐笑笑. 肌少症与老年人认知功能障碍相关发病机制的研究进展[J]. 实用老年医学, 2024, 38(8): 857-861. |
[5] | 杜雨恬, 廖欣怡, 张素琼, 石磊, 程道梅. 老年H型高血压病人合并肌少症情况及其影响因素研究[J]. 实用老年医学, 2024, 38(7): 665-668. |
[6] | 马升军, 郑艾波, 沈奕播, 古丽, 孙楷, 黄丹. 个性化营养干预对老年慢性阻塞性肺疾病病人肺功能及免疫状态的影响[J]. 实用老年医学, 2024, 38(7): 683-687. |
[7] | 史岚平, 刘俊松, 王赎, 刘焕兵. 肌少症与心力衰竭和心肌细胞的相关性研究[J]. 实用老年医学, 2024, 38(7): 743-747. |
[8] | 周灵杉, 张海燕, 骆颖, 敖小君, 刘蓉, 杨渊, 乔成栋. 老年肌少症人群中血浆褪黑素水平变化的临床分析[J]. 实用老年医学, 2024, 38(5): 465-437. |
[9] | 唐娜, 郭华, 张云云, 崔小川. 谷氧还蛋白1在氧化应激引起的老年多发疾病中的研究进展[J]. 实用老年医学, 2024, 38(5): 516-437. |
[10] | 王金涛, 胡坚. 老年人2型糖尿病与肌少症的关系研究进展[J]. 实用老年医学, 2024, 38(5): 529-437. |
[11] | 李铭麟, 王佳贺. 中药灵芝多糖抗衰老作用的研究进展[J]. 实用老年医学, 2024, 38(4): 330-333. |
[12] | 李佳纯, 刘继业. 黄精多糖抗衰老的研究进展[J]. 实用老年医学, 2024, 38(4): 334-337. |
[13] | 王琦, 徐慧萍, 时慕华, 张敏, 朱金雨, 柏赟. 老年髋部骨折合并肌少症病人修订版奥塔戈运动方案的初步构建[J]. 实用老年医学, 2024, 38(4): 422-426. |
[14] | 董昱, 葛伟. 中药菟丝子抗衰老作用研究进展[J]. 实用老年医学, 2024, 38(3): 219-222. |
[15] | 李毛毛, 李洁华. 枸杞多糖抗衰老的研究进展[J]. 实用老年医学, 2024, 38(3): 223-227. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|