| [1] BREIJYEH Z, KARAMAN R. Comprehensive review on Alzheimer’s disease: causes and treatment[J]. Molecules, 2020, 25(24):5789. [2] HANG X X, TIAN Y, WANG Z T,et al. The epidemiology of Alzheimer’s disease modifiable risk factors and prevention[J]. J Prev Alzheimers Dis,2021,8(3):313-321.
 [3] YAMAZAKI Y, ZHAO N, CAULFIELD T R, et al. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies[J]. Nat Rev Neurol, 2019, 15(9):501-518.
 [4] JUNG J H, JEON S, BAIK K, et al Apolipoprotein E4, amyloid, and cognition in Alzheimer’s and Lewy body disease[J]. Neurobiol Aging, 2021, 106:45-54.
 [5] YIN Y, YANG H, LI R, et al. A systematic review of the role of TREM2 in Alzheimer’s disease.[J]. Chin Med J: Engl, 2024, 137(14):1684-1694.
 [6] LOY C T, SCHOFIELD P R, TURNER A M, et al. Genetics of dementia.[J] Lancet, 2024, 383(9919):828-840.
 [7] APOSTOLOVA L G, RISACHER S L, DURAN T, et al. Associations of the top 20 Alzheimer disease risk variants with brain amyloidosis[J]. JAMA Neurol, 2018, 75(3): 328-341.
 [8] KIM J P, JUNG S H, JANG B, et al. Cross-ancestry genome-wide association study identifies implications of SORL1 in cerebral beta-amyloid deposition[J]. Nat Commun, 2025, 16(1): 3150.
 [9] ASADIFARD E, HOKMABADI M, HASHEMI M, et al. Linking gut microbiota dysbiosis to molecular pathways in Alzheimer’s disease[J]. Brain Res, 2024, 1845: 149242.
 [10] 汤雅宁, 吉丽娜, 华子春. 基于大数据分析探究影响阿尔兹海默症疾病进展的关键基因及通路[J]. 药物生物技术, 2022, 29(4): 331-337.
 [11] STRATH L J, MENG L, ZHANG Y, et al. Differential DNA methylation profiles of Alzheimer’s disease-related genomic pathways in the blood of cognitively-intact individuals with and without high impact chronic pain[J]. J Alzheimers Dis Rep, 2024, 8(1): 1549-1557.
 [12] SAVELEVA L, CERVENA T, MENGONI C, et al. Transcriptomic and epigenomic profiling reveals altered responses to diesel emissions in Alzheimer’s disease both in vitro and in population-based data[J]. Alzheimers Dement, 2024, 20(12): 8825-8843.
 [13] GOLD A, KAYE S, GAO J, et al. Propionate decreases microglial activation but impairs phagocytic capacity in response to aggregated fibrillar amyloid beta protein[J]. ACS Chem Neurosci, 2024, 15(21): 4010-4020.
 [14] CHINNATHAMBI S. Histone deacetylase’s regulates Tau function in Alzheimer’s disease[J]. Adv Protein Chem Struct Biol, 2025, 143: 339-361.
 [15] LIU Q, WANG X, FANG Z T, et al. Upregulation of ISG15 induced by MAPT/tau accumulation represses autophagic flux by inhibiting HDAC6 activity: a vicious cycle in Alzheimer disease[J]. Autophagy, 2025, 21(4): 807-826.
 [16] GRAVES P, ZENG Y. Biogenesis of mammalian microRNAs: a global view[J]. Genomics Proteomics Bioinformatics, 2012, 10(5): 239-245.
 [17] SUN Y, PANG X, HUANG X, et al.Potential mechanisms of non-coding RNA regulation in Alzheimer’s disease[J].Neural Regen Res, 2026, 21(1):265-280. doi: 10.4103/NRR.NRR-D-24-00696.
 [18] KIKUCHI M, SEKIYA M, HARA N,et al. The disruption of the network centered on RAC1 is associated with the pathology of Alzheimer’s disease and leads to age-dependent neurodegeration[J]. Human Mol gene, 2020, 29: 817-833.
 [19] FENG Y, YU X, HAN J. Quercetin regulates the polarization of microglia through the NRF2/HO1 pathway and mitigates Alzheimer’s disease[J]. Actas Esp Psiquiatr, 2024, 52(6): 786-799.
 [20] LÓPEZ-CEPEDA M L, ANGARITA-RODRÍGUEZ A, ROJAS-CRUZ A F, et al. Extracellular competing endogenous RNA networks reveal key regulators of early amyloid pathology propagation in Alzheimer’s disease[J].Int J Mol Sci,2025,26(8):3544.
 [21] IGA J I, YOSHINO Y, OZAKI T, et al. Blood RNA transcripts show changes in inflammation and lipid metabolism in Alzheimer’s disease and mitochondrial function in mild cognitive impairment[J]. J Alzheimers Dis Rep, 2024, 8(1): 1690-1703.
 [22] ITSUNO M, TANABE H, SANO E, et al.MAPT-A152T mutation drives neuronal hyperactivity through Fyn-NMDAR signaling in human iPSC-Derived neurons: insights into Alzheimer’s pathogenesis[J].Regen Ther,2025,28:201-213.
 [23] BEYDOUN M A, BEYDOUN H A, LI Z, et al. Alzheimer’s disease polygenic risk, the plasma proteome, and dementia incidence among UK older adults[J]. Geroscience, 2025, 47(2): 2507-2523.
 [24] 李明希, 张桂美, 尚天玲, 等. Aβ诱导依赖caspase-1/GSDMD通路的细胞焦亡与阿尔兹海默病的研究进展[J]. 中国免疫学杂志, 2021, 37(24): 3070-3074.
 [25] PHILIPPI S M, BP K, RAJ T, et al. APOE genotype and brain amyloid are associated with changes in the plasma proteome in elderly subjects without dementia[J]. Ann Clin Transl Neurol, 2025, 12(2): 366-382.
 [26] SUN Y, BAI G, YANG K, et.al.Multi-target neuroprotection by dl-PHPB in APP/PS1 mice: a proteomic analysis[J].Front Pharmacol, 2025, 16: 1554168.
 [27] FU J, LIANG Z, CHEN Z, et al. Deciphering the therapeutic efficacy and underlying mechanisms of dendrobium officinale polysaccharides in the intervention of Alzheimer’s disease mice: insights from metabolomics and microbiome[J]. J Agric Food Chem, 2025, 73(9): 5635-5648.
 [28] SHUKLA A, MEENA K, GUPTA A, et al. 1H NMR-based metabolomic signatures in rodent models of sporadic Alzheimer’s disease and metabolic disorders[J]. ACS Chem Neurosci, 2024, 15(24): 4478-4499.
 [29] MATTHEWS D G, KHORANI M, BOBE G, et al. Centella asiatica improves cognitive function and alters the hippocampal metabolome of aged Tg2576 and wild-type mice[J]. J Alzheimers Dis Rep, 2024, 8(1): 1611-1638.
 [30] LIU J, ZHANG Y, ZHANG M, et al. 6'''-Feruloylspinosin alleviates Aβ-induced toxicity by modulating relevant neurotransmitter and the AMPK/mTOR signaling pathway[J]. Free Radic Biol Med, 2025, 227: 434-445.
 [31] LI H, HUANG J, ZHAO D, et al. Longitudinal assessment of peripheral organ metabolism and the gut microbiota in an APP/PS1 transgenic mouse model of Alzheimer’s disease[J]. Neural Regen Res, 2025, 20(10): 2982-2997.
 [32] MIR M, KHOSRAVANI P, RAMEZANNEZHAD E, et al. Associations between metabolomics findings and brain hypometabolism in mild cognitive impairment and Alzheimer’s disease[J]. Curr Alzheimer Res, 2024, 21(9): 679-689.
 [33] FRANÇOIS M, PASCOVICI D, WANG Y, et al. Saliva proteome, metabolome and microbiome signatures for detection of Alzheimer’s disease[J]. Metabolites, 2024, 14(12): 714.
 [34] İŞ Ö, MIN Y, WANG X, et al. Multi layered omics approaches reveal Glia specific alterations in Alzheimer’s disease: a systematic review and future prospects[J]. Glia, 2025, 73(3): 539-573.
 [35] PENG D, LIU T, LU H, et al. Intranasal delivery of engineered extracellular vesicles loaded with miR-206-3p antagomir ameliorates Alzheimer’s disease phenotypes[J]. Theranostics, 2024, 14(19): 7623-7644.
 [36] LIN M, ZHOU Y, LIANG P, et al. Identification of Alzheimer’s disease biomarkers and their immune function characterization[J]. Arch Med Sci, 2025, 21(1):233-257.
 [37] JIANG J, ZHAO K, LI W, et al. Multiomics reveals biological mechanisms linking macroscale structural covariance network dysfunction with neuropsychiatric symptoms across the Alzheimer’s disease continuum[J]. Biol Psychiatry, 2025, 97(11): 1067-1078.
 |