[1] KNOPMAN D S, AMIEVA H, PETERSEN R C, et al. Alzheimer disease[J]. Nat Rev Dis Primers, 2021, 7(1): 33. [2] 首都医科大学宣武医院国家神经疾病医学中心, 中国疾病预防控制中心慢性非传染性疾病预防控制中心, 国家卫生健康委能力建设和继续教育中心, 等. 中国阿尔茨海默病蓝皮书(精简版)[J]. 中华医学杂志, 2024, 104(29): 2701-2727. [3] LIN T, VAN HUSEN L S, YU Y, et al. Lack of N-glycosylation increases amyloidogenic processing of the amyloid precursor protein[J]. Glycobiology, 2022, 32(6): 506-517. [4] PATON B, SUAREZ M, HERRERO P, et al. Glycosylation biomarkers associated with age-related diseases and current methods for glycan analysis[J]. Int J Mol Sci, 2021, 22(11): 5788. [5] ZHOU R Z, DUELL F, AXENHUS M, et al. A glycan biomarker predicts cognitive decline in amyloid- and tau-negative patients[J]. Brain Commun, 2024, 6(6): fcae371. [6] ZHOU R Z, VETRANO D L, GRANDE G, et al. A glycan epitope correlates with tau in serum and predicts progression to Alzheimer’s disease in combination with APOE4 allele status[J]. Alzheimers Dement, 2023, 19(7): 3244-3249. [7] CHEN Z, YU Q, YU Q, et al. In-depth site-specific analysis of N-glycoproteome in human cerebrospinal fluid and glycosylation landscape changes in Alzheimer’s disease[J]. Mol Cell Proteomics, 2021, 20: 100081. [8] HOSHI K, ITO H, ABE E, et al. Transferrin biosynthesized in the brain is a novel biomarker for Alzheimer’s disease[J]. Metabolites, 2021, 11(9): 616. [9] LOSEV Y, FRENKEL-PINTER M, ABU-HUSSIEN M, et al. Differential effects of putative N-glycosylation sites in human Tau on Alzheimer’s disease-related neurodegeneration[J]. Cell Mol Life Sci, 2021, 78(5): 2231-2245. [10] ZHANG X, YUAN H, LYU J, et al. Association of dementia with immunoglobulin G N-glycans in a Chinese Han population[J]. NPJ Aging Mech Dis, 2021, 7(1): 3. [11] WANG Y, CAO Y, HUANG H, et al. DHEC mesylate attenuates pathologies and aberrant bisecting N-glycosylation in Alzheimer’s disease models[J]. Neuropharmacology, 2024, 248: 109863. [12] WANG Y, DU Y, HUANG H, et al. Targeting aberrant glycosylation to modulate microglial response and improve cognition in models of Alzheimer’s disease[J]. Pharmacol Res, 2024, 202: 107133. [13] HAUKEDAL H, FREUDE K K. Implications of glycosylation in Alzheimer’s disease[J]. Front Neurosci, 2021, 14: 625348. [14] KRONIMUS Y, ALBUS A, HASENBERG M, et al. Fc N-glycosylation of autoreactive Aβ antibodies as a blood-based biomarker for Alzheimer’s disease[J]. Alzheimers Dement, 2023, 19(12): 5563-5572. [15] CHEN Z, WANG D, YU Q, et al. In-depth site-specific O-glycosylation analysis of glycoproteins and endogenous peptides in cerebrospinal fluid (CSF) from healthy individuals, mild cognitive impairment (MCI), and Alzheimer’s disease (AD) patients[J]. ACS Chem Biol, 2022, 17(11): 3059-3068. [16] SINGH Y, REGMI D, ORMAZA D, et al. Mucin-type O-glycosylation proximal to β-secretase cleavage site affects APP processing and aggregation fate[J]. Front Chem, 2022, 10: 859822. [17] TACHIDA Y, IIJIMA J, TAKAHASHI K, et al. O-GalNAc glycosylation determines intracellular trafficking of APP and Aβ production[J]. J Biol Chem, 2023, 299(7): 104905. [18] AKASAKA-MANYA K, MANYA H. The role of APP O-glycosylation in Alzheimer’s disease[J]. Biomolecules, 2020, 10(11): 1569. [19] LEE B E, SUH P G, KIM J I. O-GlcNAcylation in health and neurodegenerative diseases[J]. Exp Mol Med, 2021, 53(11): 1674-1682. [20] GRIFFITH L S, MATHES M, SCHMITZ B. β-Amyloid precursor protein is modified with O-linked N-acetylglucosamine[J]. J Neurosci Res, 1995, 41(2): 270-278. [21] CHUN Y S, PARK Y, OH H G, et al. O-GlcNAcylation promotes non-amyloidogenic processing of amyloid-β protein precursor via inhibition of endocytosis from the plasma membrane[J]. J Alzheimers Dis, 2015, 44(1): 261-275. [22] PARK J, HA H J, CHUNG E S, et al. O-GlcNAcylation ameliorates the pathological manifestations of Alzheimer’s disease by inhibiting necroptosis[J]. Sci Adv, 2021, 7(3): eabd3207. [23] BALANA A T, LEVINE P M, CRAVEN T W, et al. O-GlcNAc modification of small heat shock proteins enhances their anti-amyloid chaperone activity[J]. Nat Chem, 2021, 13(5): 441-450. [24] CANTRELLE F X, LOYENS A, TRIVELLI X, et al. Phosphorylation and O-GlcNAcylation of the PHF-1 epitope of tau protein induce local conformational changes of the C-terminus and modulate tau self-assembly into fibrillar aggregates[J]. Front Mol Neurosci, 2021, 14: 661368. [25] ROSTGAARD N, JUL P H, GARMER M, et al. Increasing O-GlcNAcylation attenuates tau hyperphosphorylation and behavioral impairment in rTg4510 tauopathy mice[J]. J Integr Neurosci, 2023, 22(5): 135. [26] PAN D, GU J H, ZHANG J, et al. Thiamme2-G, a novel O-GlcNAcase inhibitor, reduces tau hyperphosphorylation and rescues cognitive impairment in mice[J]. J Alzheimers Dis, 2021, 81(1): 273-286. [27] LI X, HAN J, BUJARANIPALLI S, et al. Structure-based discovery and development of novel O-GlcNAcase inhibitors for the treatment of Alzheimer’s disease[J]. Eur J Med Chem, 2022, 238: 114444. [28] WEBER P, MÉSZÁROS Z, JAGEČIĆ D, et al. Diaminocyclopentane-derived O-GlcNAcase inhibitors for combating tau hyperphosphorylation in Alzheimer’s disease[J]. Chem Commun, 2022, 58(63): 8838-8841. [29] WEBER P, BOJAROVÁ P, BROUZDOVÁ J, et al. Diaminocyclopentane-l-lysine adducts: potent and selective inhibitors of human O-GlcNAcase[J]. Bioorg Chem, 2024, 148: 107452. [30] ALTEEN M G, TAN H Y, VOCADLO D J. Monitoring and modulating O-GlcNAcylation: assays and inhibitors of O-GlcNAc processing enzymes[J]. Curr Opin Struct Biol, 2021, 68: 157-165. |