[1] 陈博, 邓强, 李中锋, 等. Hippo信号通路成骨、成肌分化功能研究进展[J]. 中国骨质疏松杂志, 2023, 29(10): 1538-1543. [2] ISLAM R, HONG Z. YAP/TAZ as mechanobiological signaling pathway in cardiovascular physiological regulation and pathogenesis[J]. Mechanobiol Med, 2024, 2(4): 100085. [3] 黄宏兴, 史晓林, 李盛华, 等. 肌少-骨质疏松症专家共识[J]. 中国骨质疏松杂志, 2022, 28(11): 1561-1570. [4] 郑浩, 姚啸生, 路翀, 等. 肌少-骨质疏松症动物模型及评价方法研究进展[J]. 中国骨质疏松杂志, 2022, 28(11): 1609-1613. [5] WANG Y J, WANG Y, ZHAN J K, et al. Sarco-osteoporosis: prevalence and association with frailty in Chinese community-dwelling older adults[J]. Int J Endocrinol, 2015, 2015: 482940. [6] HIRSCHFELD H P, KINSELLA R, DUQUE G. Osteosarcopenia: where bone, muscle, and fat collide[J]. Osteoporos Int, 2017, 28(10): 2781-2790. [7] KIRK B, AL SAEDI A, DUQUE G. Osteosarcopenia: a case of geroscience[J]. Aging Med: Milton, 2019, 2(3): 147-156. [8] DI MONACO M, CASTIGLIONI C, BARDESONO F, et al. Sarcopenia, osteoporosis and the burden of prevalent vertebral fractures: a cross-sectional study of 350 women with hip fracture[J]. Eur J Phys Rehabil Med, 2020, 56(2): 184-190. [9] ALZAHRANI F A, SAADELDIN I M, AHMAD A, et al. The potential use of mesenchymal stem cells and their derived exosomes as immunomodulatory agents for COVID-19 patients[J]. Stem Cells Int, 2020, 2020: 8835986. [10] VISWANATHAN S, SHI Y, GALIPEAU J, et al. Mesenchymal stem versus stromal cells: international society for cell & gene therapy (ISCT©) mesenchymal stromal cell committee position statement on nomenclature[J]. Cytotherapy, 2019, 21(10): 1019-1024. [11] MO J S, PARK H W, GUAN K L. The Hippo signaling pathway in stem cell biology and cancer[J]. EMBO Rep, 2014, 15(6): 642-656. [12] QI S, ZHONG Z, ZHU Y, et al. Two Hippo signaling modules orchestrate liver size and tumorigenesis[J]. EMBO J, 2023, 42(11): e112126. [13] 苗丽, 张晨亮, 李欣, 等. 间充质干细胞成骨和成脂分化调控机制研究[J]. 药物评价研究, 2020, 43(12): 2363-2371. [14] 段煜东, 张子程, 李博, 等. Hippo信号通路在成骨代谢中的研究进展[J]. 第二军医大学学报, 2021, 42(3): 314-319. [15] 门通, 朴善花, 滕春波. Hippo信号通路转录效应因子TAZ/YAP对间充质干细胞分化的调控[J]. 遗传, 2013, 35(11): 1283-1290. [16] XU W, YANG Y, LI N, et al. Interaction between mesenchymal stem cells and immune cells during bone injury repair[J]. Int J Mol Sci, 2023, 24(19): 14484. [17] KOMORI T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2[J]. Int J Mol Sci, 2019, 20(7): 1694. [18] HONG J H, HWANG E S, MCMANUS M T, et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation[J]. Science, 2005, 309(5737): 1074-1078. [19] ID BOUFKER H, LAGNEAUX L, NAJAR M, et al. The Src inhibitor dasatinib accelerates the differentiation of human bone marrow-derived mesenchymal stromal cells into osteoblasts[J]. BMC Cancer, 2010, 10: 298. [20] WATTIEZ A S, SOWERS L P, RUSSO A F. Calcitonin gene-related peptide (CGRP): role in migraine pathophysiology and therapeutic targeting[J]. Expert Opin Ther Targets, 2020, 24(2): 91-100. [21] GAO F, LIU G, WANG J, et al. Methylation of CALCA and CALCB in pancreatic ductal adenocarcinoma[J]. Oxid Med Cell Longev, 2021, 2021: 2088345. [22] WU Z, GUAN K L. Hippo signaling in embryogenesis and development[J]. Trends Biochem Sci, 2021, 46(1): 51-63. [23] WANG B, LIN J, ZHANG Q, et al. αCGRP affects BMSCs’ migration and osteogenesis via the hippo-YAP pathway[J]. Cell Transplant, 2019, 28(11): 1420-1431. [24] CHANG C L, CAI Z, HSU S Y T. Sustained activation of CLR/RAMP receptors by gel-forming agonists[J]. Int J Mol Sci, 2022, 23(21): 13408. [25] ZHANG Q, GUO Y, YU H, et al. Receptor activity-modifying protein 1 regulates the phenotypic expression of BMSCs via the Hippo/Yap pathway[J]. J Cell Physiol, 2019, 234(8): 13969-13976. [26] MÉNDEZ-MARTÍNEZ M, ZAMILPA A, ZAVALA-SÁNCHEZ M A, et al. Anti-adipogenic effect of Malva parviflora on 3T3-L1 adipocytes[J]. PLoS One, 2024, 19(8): e0306903. [27] CHOI S, KANG J G, TRAN Y T H, et al. Hippo-YAP/TAZ signalling coordinates adipose plasticity and energy balance by uncoupling leptin expression from fat mass[J]. Nat Metab, 2024, 6(5): 847-860. [28] GENINI D, CATAPANO C V. Control of peroxisome proliferator-activated receptor fate by the ubiquitinproteasome system[J]. J Recept Signal Transduct Res, 2006, 26(5/6): 679-692. [29] 黄勇彬, 王涛, 娄园一, 等. 间充质干细胞促进肌肉组织修复的应用前景[J]. 中国组织工程研究, 2024, 28(1): 107-112. [30] MOLINA T, FABRE P, DUMONT N A. Fibro-adipogenic progenitors in skeletal muscle homeostasis, regeneration and diseases[J]. Open Biol, 2021, 11(12): 210110. [31] SOUSA-VICTOR P, GARCÍA-PRAT L, MUOZ-CÁNOVES P. Control of satellite cell function in muscle regeneration and its disruption in ageing[J]. Nat Rev Mol Cell Biol, 2022, 23(3): 204-226. [32] NEJIGANE S, HARAMOTO Y, OKUNO M, et al. The transcriptional coactivators Yap and TAZ are expressed during early Xenopus development[J]. Int J Dev Biol, 2011, 55(1): 121-126. [33] JEONG H, BAE S, AN S Y, et al. TAZ as a novel enhancer of MyoD-mediated myogenic differentiation[J]. FASEB J, 2010, 24(9): 3310-3320. [34] ŚWIATKOWSKA-FLIS B, ZDOLIŃSKA-MALINOWSKA I, SŁUGOCKA D, et al. The use of umbilical cord-derived mesenchymal stem cells in patients with muscular dystrophies: results from compassionate use in real-life settings[J]. Stem Cells Transl Med, 2021, 10(10): 1372-1383. [35] KANESHIGE A, KAJI T, ZHANG L, et al. Relayed signaling between mesenchymal progenitors and muscle stem cells ensures adaptive stem cell response to increased mechanical load[J]. Cell Stem Cell, 2022, 29(2): 265-280.e6. [36] SUN C, DE MELLO V, MOHAMED A, et al. Common and distinctive functions of the hippo effectors Taz and Yap in skeletal muscle stem cell function[J]. Stem Cells, 2017, 35(8): 1958-1972. [37] MAUVIEL A, NALLET-STAUB F, VARELAS X. Integrating developmental signals: a Hippo in the (path)way[J]. Oncogene, 2012, 31(14): 1743-1756. [38] REGUÉ L, MOU F, AVRUCH J. G protein-coupled receptors engage the mammalian Hippo pathway through F-actin: F-actin, assembled in response to Galpha12/13 induced RhoA-GTP, promotes dephosphorylation and activation of the YAP oncogene[J]. Bioessays, 2013, 35(5): 430-435. |