[1] ROUSSEAUD A, MORICEAU S, RAMOS-BROSSIER M, et al. Bone-brain crosstalk and potential associated diseases[J]. Horm Mol Biol Clin Investig, 2016, 28(2):69-83. [2] ZHOU R, DENG J, ZHANG M, et al. Association between bone mineral density and the risk of Alzheimer's disease[J]. J Alzheimers Dis, 2011, 24(1):101-108. [3] SOHRABI H R, BATES K A, WEINBORN M, et al. Bone mineral density, adiposity, and cognitive functions[J]. Front Aging Neurosci, 2015, 7:16. [4] NOH H M, OH S, SONG H J, et al. Relationships between cognitive function and body composition among community-dwelling older adults: a cross-sectional study[J]. BMC Geriatr, 2017,17(1):259. [5] PU Z, TANG X, FEI Y, et al. Bone metabolic biomarkers and bone mineral density in male patients with early-stage Alzheimer's disease[J]. Eur Geriatr Med, 2020,11(3):403-408. [6] MOSER S C, VAN DER EERDEN B C J. Osteocalcin-a versatile bone-derived hormone[J]. Front Endocrinol:Lausanne, 2019,9:794. [7] OURY F, KHRIMIAN L, DENNY C A, et al. Maternal and offspring pools of osteocalcin influence brain development and functions[J]. Cell, 2013,155(1):228-241. [8] GU P Y, YU F, JIN S, et al. Analysis of serum undercarboxylated osteocalcin level in rats with type 2 diabetes mellitus and the correlation with cognitive impairment[J]. Exp Ther Med, 2017,14(3):2603-2607. [9] BRADBURN S, MCPHEE J S, BAGLEY L, et al. Association between osteocalcin and cognitive performance in healthy older adults[J]. Age Ageing, 2016,45(6):844-849. [10] PUIG J, BLASCO G, DAUNIS-I-ESTADELLA J, et al. Lower serum osteocalcin concentrations are associated with brain microstructural changes and worse cognitive performance[J]. Clin Endocrinol:Oxf, 2016,84(5):756-763. [11] NAKAMURA M, IMAOKA M, TAKEDA M, Interaction of bone and brain: osteocalcin and cognition[J]. Int J Neurosci, 2021,131(11):1115-1123. [12] SHAN C, GHOSH A, GUO X Z, et al. Roles for osteocalcin in brain signalling: implications in cognition- and motor-related disorders[J]. Mol Brain, 2019,12(1):23. [13] CHEN H, SHANG D, WEN Y, et al. Bone-derived modulators that regulate brain function: emerging therapeutic targets for neurological disorders[J]. Front Cell Dev Biol, 2021,9:683457. [14] KHRIMIAN L, OBRI A, RAMOS-BROSSIER M, et al. Gpr158 mediates osteocalcin's regulation of cognition[J]. J Exp Med, 2017, 214(10):2859-2873. [15] OBRI A, KHRIMIAN L, KARSENTY G, et al. Osteocalcin in the brain: from embryonic development to age-related decline in cognition[J]. Nat Rev Endocrinol, 2018,14(3):174-182. [16] MIZOGUCHI Y, YAO H, IMAMURA Y, et al. Lower brain-derived neurotrophic factor levels are associated with age-related memory impairment in community-dwelling older adults: the Sefuri study[J]. Sci Rep, 2020,10(1):16442. [17] RODRíGUEZ-BERDINI L, CAPUTTO B L. Lipid metabolism in neurons: a brief story of a novel c-Fos-dependent mechanism for the regulation of their synthesis[J]. Front Cell Neurosci, 2019, 13:198. [18] PAVLOPOULOS E, JONES S, KOSMIDIS S, et al. Molecular mechanism for age-related memory loss: the histone-binding protein RbAp48[J]. Sci Transl Med, 2013, 5(200):200ra115. [19] KOSMIDIS S, POLYZOS A, HARVEY L, et al. RbAp48 protein is a critical component of GPR158/OCN signaling and ameliorates age-related memory loss[J]. Cell Rep, 2018, 25(4):959-973.e6. [20] ÇETEREISI D, KRAMVIS I, GEBUIS T, et al. Gpr158 deficiency impacts hippocampal CA1 neuronal excitability, dendritic architecture, and affects spatial learning[J]. Front Cell Neurosci, 2019, 13:465. [21] CONDOMITTI G, WIERDA K D, SCHROEDER A, et al. An input-specific orphan receptor GPR158-HSPG interaction organizes hippocampal mossy fiber-CA3 synapses[J]. Neuron, 2018, 100(1):201-215.e9. [22] KOMORI T. Functions of osteocalcin in bone, pancreas, testis, and muscle[J]. Int J Mol Sci, 2020, 21(20):7513. [23] DUCY P. Bone regulation of insulin secretion and glucose homeostasis[J]. Endocrinology, 2020, 161(10):bqaa149. [24] LEE N K, SOWA H, HINOI E, et al. Endocrine regulation of energy metabolism by the skeleton[J]. Cell, 2007,130(3):456-469. [25] MIZOKAMI A, YASUTAKE Y, GAO J, et al. Osteocalcin induces release of glucagon-like peptide-1 and thereby stimulates insulin secretion in mice[J]. PLoS One, 2013,8(2):e57375. [26] RIEDERER P, KORCZYN A D, Ali S S, et al. The diabetic brain and cognition[J]. J Neural Transm:Vienna, 2017,124(11):1431-1454. [27] OTANI T, MIZOKAMI A, KAWAKUBO-YASUKOCHI T, et al. The roles of osteocalcin in lipid metabolism in adipose tissue and liver[J]. Adv Biol Regul, 2020, 78:100752. [28] 包玉倩.骨钙素介导的骨骼-心血管“对话”[J]. 中华内分泌代谢杂志, 2019, 35(6):455-459. [29] RIZZO M R, FASANO R, PAOLISSO G. Adiponectin and cognitive decline[J]. Int J Mol Sci, 2020,21(6):2010. [30] LETRA L, RODRIGUES T, MATAFOME P, et al. Adiponectin and sporadic Alzheimer's disease: clinical and molecular links[J]. Front Neuroendocrinol, 2019,52:1-11. [31] ROJAS M, CHÁVEZ-CASTILLO M, PIRELA D, et al. Metabolic syndrome: is it time to add the central nervous system?[J]. Nutrients, 2021, 13(7):2254. [32] CHEN W H, JIN W, LYU P Y, et al. Carotid atherosclerosis and cognitive impairment in nonstroke patients[J]. Chin Med J: Engl, 2017,130(19):2375-2379. |