[1] 黄晓雯, 畅君雷. 外周炎症对血脑屏障功能的影响及其机制研究进展[J]. 生命科学, 2021, 33(1): 7-14. [2] BELARBI K, CUVELIER E, BONTE M A, et al. Glycosphingolipids and neuroinflammation in Parkinson’s disease[J]. Mol Neurodegener, 2020, 15(1): 59. [3] DHAPOLA R, HOTA S S, SARMA P, et al. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease[J]. Inflammopharmacology, 2021, 29(6): 1669-1681. [4] TIAN Z, JI X, LIU J. Neuroinflammation in vascular cognitive impairment and dementia: current evidence, advances, and prospects[J]. Int J Mol Sci, 2022, 23(11): 6224. [5] ZHANG L Y, PAN J, MAMTILAHUN M, et al. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion[J]. Theranostics, 2020, 10(1): 74-90. [6] MIYAMOTO N, MAGAMI S, INABA T, et al. The effects of A1/A2 astrocytes on oligodendrocyte linage cells against white matter injury under prolonged cerebral hypoperfusion[J]. Glia, 2020, 68(9): 1910-1924. [7] FÜNFSCHILLING U, SUPPLIE L M, MAHAD D, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity[J]. Nature, 2012, 485(7399): 517-521. [8] HOU X, LIANG X, CHEN J F, et al. Ecto-5′-nucleotidase (CD73) is involved in chronic cerebral hypoperfusion-induced white matter lesions and cognitive impairment by regulating glial cell activation and pro-inflammatory cytokines[J]. Neuroscience, 2015, 297: 118-126. [9] SEO J H, MIYAMOTO N, HAYAKAWA K, et al. Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury[J]. J Clin Invest, 2013, 123(2): 782-786. [10] BJERKE M, ZETTERBERG H, EDMAN Å, et al. Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimer’s disease[J]. J Alzheimers Dis, 2011, 27(3): 665-676. [11] ZHAO J, BI W, XIAO S, et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice[J]. Sci Rep, 2019, 9(1): 5790. [12] MOTAGHINEJAD M, MOTEVALIAN M, FATIMA S, et al. The neuroprotective effect of curcumin against nicotine-induced neurotoxicity is mediated by CREB-BDNF signaling pathway[J]. Neurochem Res, 2017, 42(10): 2921-2932. [13] NI P, DONG H, ZHOU Q, et al. Preoperative sleep disturbance exaggerates surgery-induced neuroinflammation and neuronal damage in aged mice[J]. Mediators Inflamm, 2019, 2019: 8301725. [14] ANDERSON R M, GLANZ R M, JOHNSON S B, et al. Prolonged corticosterone exposure induces dendritic spine remodeling and attrition in the rat medial prefrontal cortex[J]. J Comp Neurol, 2016, 524(18): 3729-3746. [15] QUAN C, CHEN J, LUO Y, et al. BIS-guided deep anesthesia decreases short-term postoperative cognitive dysfunction and peripheral inflammation in elderly patients undergoing abdominal surgery[J]. Brain Behav, 2019, 9(4): e01238. [16] KABADI S V, STOICA B A, ZIMMER D B, et al. S100B inhibition reduces behavioral and pathologic changes in experimental traumatic brain injury[J]. J Cereb Blood Flow Metab, 2015, 35(12):2010-2020. [17] MIZUSHIMA H, ZHOU C J, DOHI K, et al. Reduced postischemic apoptosis in the hippocampus of mice deficient in interleukin-1[J]. J Comp Neurol, 2002, 448(2): 203-216. [18] RUIZ DE MORALES J M G, PUIG L, DAUDÉN E, et al. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: an updated review of the evidence focusing in controversies[J]. Autoimmun Rev, 2020, 19(1): 102429. [19] BAUD V, KARIN M. Signal transduction by tumor necrosis factor and its relatives[J]. Trends Cell Biol, 2001, 11(9): 372-377. [20] DEGOS V, VACAS S, HAN Z, et al. Depletion of bone marrow-derived macrophages perturbs the innate immune response to surgery and reduces postoperative memory dysfunction[J]. Anesthesiology, 2013, 118(3): 527-536. [21] MCALPINE C S, PARK J, GRICIUC A, et al. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease[J]. Nature, 2021, 595(7869): 701-706. [22] BABCOCK A A, ILKJÆR L, CLAUSEN B H, et al. Cytokine-producing microglia have an altered beta-amyloid load in aged APP/PS1 Tg mice[J]. Brain Behav Immun, 2015, 48: 86-101. [23] LU Y, ZHOU M, LI Y, et al. Minocycline promotes functional recovery in ischemic stroke by modulating microglia polarization through STAT1/STAT6 pathways[J]. Biochem Pharmacol, 2021, 186: 114464. [24] MOONEN S, KOPER M J, VAN SCHOOR E, et al. Pyroptosis in Alzheimer’s disease: cell type-specific activation in microglia, astrocytes and neurons[J]. Acta Neuropathol, 2023, 145(2): 175-195. [25] VAN ZELLER M, DIAS D, SEBASTIÃO A M, et al. NLRP3 inflammasome: a starring role in amyloid-β- and tau-driven pathological events in Alzheimer’s disease[J]. J Alzheimers Dis, 2021, 83(3): 939-961. [26] SAWIKR Y, YARLA N S, PELUSO I, et al. Neuroinflammation in Alzheimer’s disease: the preventive and therapeutic potential of polyphenolic nutraceuticals[J]. Adv Protein Chem Struct Biol, 2017, 108: 33-57. [27] CALSOLARO V, EDISON P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions[J]. Alzheimers Dement, 2016, 12(6): 719-732. [28] XUE F, DU H. TREM2 mediates microglial anti-inflammatory activations in Alzheimer’s disease: lessons learned from transcriptomics[J]. Cells, 2021, 10(2): 321. [29] ALATA W, YE Y, ST-AMOUR I, et al. Human apolipoprotein E4 expression impairs cerebral vascularization and blood-brain barrier function in mice.[J]. J Cereb Blood Flow Metab, 2015, 35(1):86-94. |