实用老年医学 ›› 2023, Vol. 37 ›› Issue (9): 882-885.doi: 10.3969/j.issn.1003-9198.2023.09.005
唐伟, 张子成
收稿日期:
2023-03-23
出版日期:
2023-09-20
发布日期:
2023-09-21
作者简介:
唐伟 教授
Received:
2023-03-23
Online:
2023-09-20
Published:
2023-09-21
中图分类号:
唐伟, 张子成. 人工智能在糖尿病诊疗中的研究进展[J]. 实用老年医学, 2023, 37(9): 882-885.
[1] GAUTIER T, ZIEGLER L B, GERBER M S, et al. Artificial intelligence and diabetes technology: a review [J]. Metabolism, 2021, 124: 154872. [2] WEI Z, WANG K, QU H Q, et al. From disease association to risk assessment: an optimistic view from genome-wide association studies ontype 1 diabetes [J]. PLoS Genet, 2009, 5(10): e1000678. [3] KAZEROUNI F, BAYANI A, ASADI F, et al. Type 2 diabetes mellitus prediction using data mining algorithms based on the long-noncoding RNAs expression: a comparison of four data mining approaches [J]. BMC Bioinformatics, 2020, 21(1): 372. [4] MENG X H, HUANG Y X, RAO D P, et al. Comparison of three data mining models for predicting diabetes or prediabetes by risk factors [J]. Kaohsiung J Med Sci, 2013, 29(2): 93-99. [5] 侯玉梅, 朱亚楠, 朱立春, 等. 决策树模型在2型糖尿病患病风险预测中的应用 [J]. 中国卫生统计, 2016, 33(6): 976-978,982. [6] 李娟, 吴疆, 卢莉, 等. 基于支持向量机建立环境和遗传因素对2型糖尿病的预测模型 [J]. 中华疾病控制杂志, 2012, 16(2): 171-175. [7] SELVIN E. Are there clinical implications of racial differences in HbA1c? A difference, to be a difference, must make a difference [J]. Diabetes Care, 2016, 39(8): 1462-1467. [8] BAO Y, MA X, LI H, et al. Glycated haemoglobin A1c for diagnosing diabetes in Chinese population: cross sectional epidemiological survey [J]. BMJ, 2010, 340:c2249. [9] 中国医师协会内分泌代谢科医师分会, 国家代谢性疾病临床医学研究中心. 糖尿病分型诊断中国专家共识 [J]. 中华糖尿病杂志, 2022, 14(2): 120-139. [10] CHUNG W K, ERION K, FLOREZ J C, et al. Precision medicine in diabetes: a consensus report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) [J]. Diabetes Care, 2020, 43(7): 1617-1635. [11] ZHENG T, XIE W, XU L, et al. A machine learning-based framework to identify type 2 diabetes through electronic health records [J].Int J Med Inform, 2017, 97: 120-127. [12] GUEVARA E, TORRES-GALVÁN J C, RAMÍREZ-ELÍAS M G, et al. Use of Raman spectroscopy to screen diabetes mellitus with machine learning tools [J].Biomed Opt Express, 2018, 9(10): 4998-5010. [13] IPP E, LILJENQUIST D, BODE B, et al. Pivotal evaluation of an artificial intelligence system for autonomous detection of referrable and vision-threatening diabetic retinopathy [J]. JAMA Netw Open, 2021, 4(11): e2134254. [14] VERBRAAK F D, ABRAMOFF M D, BAUSCH G C F, et al. Diagnostic accuracy of a device for the automated detection of diabetic retinopathy in a primary care setting [J]. Diabetes Care, 2019, 42(4): 651-656. [15] DAI L, WU L, LI H, et al. A deep learning system for detecting diabetic retinopathy across the disease spectrum [J]. Nat Commun, 2021, 12(1): 3242. [16] LIN S, MA Y, XU Y, et al. Artificial intelligence in community-based diabetic retinopathy telemedicine screening in urban China: cost-effectiveness and cost-utility analyses with real-world data [J]. JMIR Public Health Surveill, 2023, 9: e41624. [17] OZDEMIR F, ARI A, KILCIK M H, et al. Prediction of neuropathy, neuropathic pain and kinesiophobia in patients with type 2 diabetes and design of computerized clinical decision support systems by using artificial intelligence [J].Med Hypotheses, 2020, 143: 110070. [18] RAHMANI KATIGARI M, AYATOLLAHI H, MALEK M, et al. Fuzzy expert system for diagnosing diabetic neuropathy [J]. World J Diabetes,2017,8(2):80-88. [19] WILLIAMS B M, BORRONI D, LIU R, et al. An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study [J]. Diabetologia, 2020, 63(2): 419-430. [20] CRUZ-VEGA I, HERNANDEZ-CONTRERAS D, PEREGRINA-BARRETO H, et al. Deep learning classification for diabetic foot thermograms [J].Sensors: Basel,2020,20(6):1762. [21] DREMIN V, MARCINKEVICS Z, ZHEREBTSOV E, et al. Skin complications of diabetes mellitus revealed by polarized hyperspectral imaging and machine learning [J].IEEE Trans Med Imaging, 2021, 40(4): 1207-1216. [22] SCHÄFER Z, MATHISEN A, SVENDSEN K, et al. Toward machine-learning-based decision support in diabetes care: a risk stratification study on diabetic foot ulcer and amputation [J].Front Med: Lausanne, 2020, 7: 601602. [23] SONG X, WAITMAN L R, YU A S, et al. Longitudinal risk prediction of chronic kidney disease in diabetic patients using a temporal-enhanced gradient boosting machine: retrospective cohort study [J]. JMIR Med Inform, 2020, 8(1):e15510. [24] HÁSKOVÁ A, RADOVNICKá L, PETRUELKOVá L, et al. Real-time CGM is superior to flash glucose monitoring for glucose control in type 1 diabetes: the CORRIDA randomized controlled trial [J]. Diabetes Care, 2020, 43(11): 2744-2750. [25] 计成, 代晶, 李林通,等. 基于人工智能系统的健康教育对2型糖尿病患者控制指标的影响[J]. 药学服务与研究, 2021, 21(1): 1-5. [26] HAMON T, GAGNAYRE R. Improving knowledge of patient skills thanks to automatic analysis of online discussions [J]. Patient Educ Couns, 2013, 92(2): 197-204. [27] TARUMI S, TAKEUCHI W, CHALKIDIS G, et al. Leveraging artificial intelligence to improve chronic disease care: methods and application to pharmacotherapy decision support for type-2 diabetes mellitus [J].Methods Inf Med, 2021, 60(S1): e32-e43. [28] NIMRI R, BATTELINO T, LAFFEL L M, et al. Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes [J].Nat Med,2020,26(9):1380-1384. [29] KARIYAWASAM D, MORIN C, CASTEELS K, et al. Hybrid closed-loop insulin delivery versus sensor-augmented pump therapy in children aged 6-12 years: a randomised, controlled, cross-over, non-inferiority trial [J]. Lancet Digit Health, 2022, 4(3): e158-e168. [30] BLOCK G, AZAR K M, ROMANELLI R J, et al. Diabetes prevention and weight loss with a fully automated behavioral intervention by Email, Web, and Mobile Phone: a randomized controlled trial among persons with prediabetes [J]. J Med Internet Res, 2015, 17(10): e240. |
[1] | 王苏, 赵一璟, 魏晨敏, 陈堃, 曹雯, 王昆, 杨昱. 老年T2DM病人甘油三酯葡萄糖指数与低密度脂蛋白亚型的关系研究[J]. 实用老年医学, 2024, 38(10): 1002-1006. |
[2] | 顾崇怀, 项学军, 郑元喜, 乔锐, 林松. 达格列净对接受冠状动脉介入治疗的伴有射血分数降低的心力衰竭合并2型糖尿病老年病人疗效观察[J]. 实用老年医学, 2024, 38(10): 1025-1029. |
[3] | 周潇, 顾荣, 孔小岑, 罗勇, 王蔚萍, 马建华, 李惠琴. 桑枝总生物碱和卡格列净治疗血糖控制不佳的老年2型糖尿病病人的疗效观察[J]. 实用老年医学, 2024, 38(10): 1066-1069. |
[4] | 刘倩慧, 姚子俊, 何玉立, 徐云凡, 吴军. 老年2型糖尿病合并慢性心力衰竭病人HbA1c水平对心脏结构和功能的影响[J]. 实用老年医学, 2024, 38(5): 491-437. |
[5] | 刘童君, 赵雅洁, 胡洁玲, 胡洋, 梁伟. 糖代谢异常对血清激活素A水平的影响[J]. 实用老年医学, 2024, 38(5): 495-437. |
[6] | 杨龙璇, 唐伟. 细胞衰老与2型糖尿病胰岛B细胞功能障碍的研究进展[J]. 实用老年医学, 2024, 38(5): 521-437. |
[7] | 王金涛, 胡坚. 老年人2型糖尿病与肌少症的关系研究进展[J]. 实用老年医学, 2024, 38(5): 529-437. |
[8] | 唐源, 邓暑芳, 何咏梅, 戴雨璇, 罗晶. 老年2型糖尿病病人健康素养水平及其与衰弱的相关性[J]. 实用老年医学, 2024, 38(3): 255-259. |
[9] | 代玲俐, 俞匀. 老年2型糖尿病病人估计肾小球滤过率与胰岛素抵抗及胰岛B细胞功能的相关性研究[J]. 实用老年医学, 2023, 37(12): 1219-1223. |
[10] | 范婷泳, 袁丽, 杨小玲, 陈茜. Caprini量表评估老年糖尿病病人静脉血栓栓塞症的效果[J]. 实用老年医学, 2023, 37(12): 1233-1237. |
[11] | 张贺成, 魏苏. 老年2型糖尿病病人血清铁蛋白水平与糖尿病足发生的相关性[J]. 实用老年医学, 2023, 37(11): 1111-1114. |
[12] | 胡艳, 巫海娣, 王雪菲, 娄青林, 叶青, 顾刘宝, 戴静, 宋小波. 老年2型糖尿病病人糖尿病足风险评分与尿微量白蛋白/肌酐的相关性分析[J]. 实用老年医学, 2023, 37(11): 1134-1137. |
[13] | 宗前兴, 莫永珍. 老年2型糖尿病健康状态分层框架的应用与研究进展[J]. 实用老年医学, 2023, 37(11): 1170-1175. |
[14] | 冯海妹, 韦雪梅, 徐志新. 血糖控制程度与老年糖尿病手术病人顺式阿曲库铵肌松效果的相关性[J]. 实用老年医学, 2023, 37(8): 848-852. |
[15] | 江苏省老年医学学会老年内分泌专业委员会, 江苏省医学会糖尿病学分会, 江苏省预防医学会糖尿病预防与控制专业委员会, 南京糖尿病并发症研究会老年分会. 老年2型糖尿病病人SGLT-2抑制剂应用专家共识[J]. 实用老年医学, 2023, 37(8): 865-872. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|