[1] ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118. [2] MACLELLAN A N, PRICE E L, PUBLICOVER-BROUWER P, et al. The use of noninvasive imaging techniques in the diagnosis of melanoma: a prospective diagnostic accuracy study[J]. J Am Acad Dermatol, 2021, 85(2): 353-359. [3] WIDAATALLA Y, WOLSWIJK T, ADAN F, et al. The application of artificial intelligence in the detection of basal cell carcinoma: a systematic review[J]. J Eur Acad Dermatol Venereol,2023,37(6):1160-1167. [4] HUANG H W, HSU B W, LEE C H, et al. Development of a light-weight deep learning model for cloud applications and remote diagnosis of skin cancers[J]. J Dermatol, 2021, 48(3): 310-316. [5] 王诗琪, 刘洁, 朱晨雨, 等. 皮肤科医师与深度卷积神经网络诊断色素痣和脂溢性角化病皮肤镜图像比较[J]. 中华皮肤科杂志, 2018, 51(7): 486-489. [6] ZHAO S, XIE B, LI Y, et al. Smart identification of psoriasis by images using convolutional neural networks: a case study in China[J]. J EurAcad Dermatol Venereol, 2020, 34(3): 518-524. [7] BRESLAVETS M, SHEAR N H, LAPA T, et al. Validation of artificial intelligence application in clinical dermatology[J]. J Am Acad Dermatol, 2022, 86(1): 201-203. [8] FINK C, FUCHS T, ENK A, et al. Design of an algorithm for automated, computer-guided pasi measurements by digital image analysis[J]. J Med Syst, 2018, 42(12): 248. [9] WU H, YIN H, CHEN H, et al. A deep learning, image based approach for automated diagnosis for inflammatory skin diseases[J]. Ann Transl Med, 2020, 8(9): 581. [10] 李承旭. 基于皮肤影像的皮肤病辅助决策系统:调查、创研与应用[D].北京:北京协和医学院,2021. [11] HAN S S, PARK G H, LIM W, et al. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network[J]. PLoS One, 2018, 13(1): e0191493. [12] 郭丽芳. 白癜风诊断和病情评价人工智能模型的建立及临床应用[D] .北京:北京协和医学院,2020. [13] ZHU C Y, WANG Y K, CHEN H P, et al. A deep learning based framework for diagnosing multiple skin diseases in a clinical environment[J]. Front Med: Lausanne,2021, 8: 626369. [14] 沈长兵, 李承旭, 沈雪, 等. 基于皮肤影像大数据的皮肤病人工智能系列产品研发与应用[J]. 中国数字医学, 2019, 14(3): 22-25. [15] 蒋凌帆, 李承旭, 崔勇. 皮肤影像技术体系建设:提升皮肤病诊疗水平的重要支撑力量[J]. 中国医刊, 2022, 57(9): 929-931. [16] UDREA A, MITRA G D, COSTEA D, et al. Accuracy of a smartphone application for triage of skin lesions based on machine learning algorithms[J]. J EurAcad Dermatol Venereol, 2020, 34(3): 648-655. [17] 邹先彪. 皮肤影像学与人工智能[J]. 中国医学前沿杂志:电子版, 2019, 11(8): 1-4,6. [18] FINLAYSON S G, SUBBASWAMY A, SINGH K, et al. The clinician and dataset shift in artificial intelligence[J]. N Engl J Med, 2021, 385(3): 283-286. |