实用老年医学 ›› 2024, Vol. 38 ›› Issue (11): 1161-1166.doi: 10.3969/j.issn.1003-9198.2024.11.017
汪茜雨, 蔡晨, 胡晓澜, 黄莉吉, 谢绍锋
收稿日期:
2023-12-29
出版日期:
2024-11-20
发布日期:
2024-11-21
通讯作者:
谢绍锋,Email:xiesf3562@sina.com
基金资助:
Received:
2023-12-29
Online:
2024-11-20
Published:
2024-11-21
摘要: DM和骨质疏松症是老年人群常见的代谢紊乱性疾病。近年来大型临床研究结果表明,二甲双胍、α-葡萄糖苷酶抑制剂、二肽基肽酶-4抑制剂和胰高血糖素样多肽-1受体激动剂对降低DM病人骨折风险具有积极或中性作用,长期使用磺脲类、噻唑烷二酮类和胰岛素可能增加骨折发生风险;而钠-葡萄糖协同转运蛋白2抑制剂对骨代谢的影响呈现不一致的结果。本综述阐述了上述不同降糖药物对老年DM病人骨代谢以及骨折风险的影响,旨在为临床医师制定老年DM病人治疗策略提供参考。
中图分类号:
汪茜雨, 蔡晨, 胡晓澜, 黄莉吉, 谢绍锋. 降糖药物对老年糖尿病病人骨代谢及骨折风险影响:如何权衡利弊?[J]. 实用老年医学, 2024, 38(11): 1161-1166.
[1] SUN H, SAEEDI P, KARURANGA S, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183:109119. [2] 韩秀丹, 朱凌燕, 徐积兄. 二甲双胍对糖尿病视网膜病变的作用及机制[J]. 国际内分泌代谢杂志, 2019, 39(1):53-56. [3] SHAIK A R, SINGH P, SHAIK C, et al. Metformin: is it the well wisher of bone beyond glycemic control in diabetes mellitus?[J]. Calcif Tissue Int, 2021, 108(6):693-707. [4] KAHN S E, ZINMAN B, LACHIN J M, et al. Rosiglitazone-associated fractures in type 2 diabetes: an analysis from A Diabetes Outcome Progression Trial (ADOPT)[J]. Diabetes Care, 2008, 31(5):845-851. [5] OH T K, SONG I A. Metformin therapy and hip fracture risk among patients with type II diabetes mellitus: a population-based cohort study[J]. Bone, 2020, 135:115325. [6] TSENG C H. Metformin use is associated with a lower risk of osteoporosis/vertebral fracture in Taiwanese patients with type 2 diabetes mellitus[J]. Eur J Endocrinol, 2021, 184(2):299-310. [7] CHARLIER S, VAVANIKUNNEL J, BECKER C, et al. Antidiabetic treatment, level of glycemic control, and risk of fracture in type 2 diabetes: a nested, case-control study[J]. J Clin Endocrinol Metab, 2021, 106(2):554-566. [8] 张丽娜, 郭立新. 磺脲类降糖药物的临床认识[J]. 中国实用内科杂志, 2014, 34(10):969-973. [9] STARUP-LINDE J, GREGERSEN S, FROST M, et al. Use of glucose-lowering drugs and risk of fracture in patients with type 2 diabetes[J]. Bone, 2017, 95:136-142. [10] RAJPATHAK S N, FU C, BRODOVICZ K G, et al. Sulfonylurea use and risk of hip fractures among elderly men and women with type 2 diabetes[J]. Drugs Aging, 2015, 32(4):321-327. [11] MA P, GU B, XIONG W, et al. Glimepiride promotes osteogenic differentiation in rat osteoblasts via the PI3K/Akt/eNOS pathway in a high glucose microenvironment[J]. PLoS One, 2014, 9(11):e112243. [12] FRONCZEK-SOKÓŁ J, PYTLIK M. Effect of glimepiride on the skeletal system of ovariectomized and non-ovariectomized rats[J]. Pharmacol Rep, 2014, 66(3):412-417. [13] KOHLER S, KASPERS S, SALSALI A, et al. Analysis of fractures in patients with type 2 diabetes treated with empagliflozin in pooled data from placebo-controlled trials and a head-to-head study versus glimepiride[J]. Diabetes Care, 2018, 41(8):1809-1816. [14] BALFOUR J A, MCTAVISH D. Acarbose. An update of its pharmacology and therapeutic use in diabetes mellitus[J]. Drugs, 1993, 46(6):1025-1054. [15] HOLMAN R R, CULL C A, TURNER R C. A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (U.K. Prospective Diabetes Study 44)[J]. Diabetes Care, 1999, 22(6):960-964. [16] HE K, SHI J C, MAO X M. Safety and efficacy of acarbose in the treatment of diabetes in Chinese patients[J]. Ther Clin Risk Manag, 2014, 10:505-511. [17] CHAI S, LIU F, YANG Z, et al. Risk of fracture with dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis combining 177 randomized controlled trials with a median follow-up of 26 weeks[J]. Front Pharmacol, 2022, 13:825417. [18] CHOI H J, PARK C, LEE Y K, et al. Risk of fractures and diabetes medications: a nationwide cohort study[J]. Osteoporos Int, 2016, 27(9):2709-2715. [19] LI Y, JIN D, XIE W, et al. PPAR-γ and Wnt regulate the differentiation of MSCs into adipocytes and osteoblasts respectively[J]. Curr Stem Cell Res Ther, 2018, 13(3):185-192. [20] COLHOUN H M, LIVINGSTONE S J, LOOKER H C, et al. Hospitalised hip fracture risk with rosiglitazone and pioglitazone use compared with other glucose-lowering drugs[J]. Diabetologia, 2012, 55(11):2929-2937. [21] SCHWARTZ A V, CHEN H, AMBROSIUS W T, et al. Effects of TZD use and discontinuation on fracture rates in ACCORD Bone Study[J]. J Clin Endocrinol Metab, 2015, 100(11):4059-4066. [22] PAVLOVA V, FILIPOVA E, UZUNOVA K, et al. Pioglitazone therapy and fractures: systematic review and meta-analysis[J]. Endocr Metab Immune Disord Drug Targets, 2018, 18(5):502-507. [23] 张雅静. 钠-葡萄糖协同转运蛋白2抑制剂在2型糖尿病治疗中的研究进展[J]. 实用临床医学, 2021, 22(6):97-101. [24] TAYLOR S I, BLAU J E, ROTHER K I. Possible adverse effects of SGLT2 inhibitors on bone[J]. Lancet Diabetes Endocrinol, 2015, 3(1):8-10. [25] BLAU J E, BAUMAN V, CONWAY E M, et al. Canagliflozin triggers the FGF23/1, 25-dihydroxyvitamin D/PTH axis in healthy volunteers in a randomized crossover study[J]. JCI Insight, 2018, 3(8):e99123. [26] AL-MASHHADI Z K, VIGGERS R, STARUP-LINDE J, et al. SGLT2 inhibitor treatment is not associated with an increased risk of osteoporotic fractures when compared to GLP-1 receptor agonists: a nationwide cohort study[J]. Front Endocrinol: Lausanne, 2022, 13:861422. [27] ZHAO B, SHEN J, ZHAO J, et al. Do sodium-glucose cotransporter 2 inhibitors lead to fracture risk? A pharmacovigilance real-world study[J]. J Diabetes Investig, 2021, 12(8):1400-1407. [28] NEAL B, PERKOVIC V, MAHAFFEY K W, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med, 2017, 377(7):644-657. [29] PERKOVIC V, JARDINE M J, NEAL B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy[J]. N Engl J Med, 2019, 380(24):2295-2306. [30] BILEZIKIAN J P, WATTS N B, USISKIN K, et al. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin[J]. J Clin Endocrinol Metab, 2016, 101(1):44-51. [31] CARR R D, SOLOMON A. Inhibitors of dipeptidyl peptidase-4 as therapeutic agents for individuals with type 2 diabetes: a 25-year journey[J]. Diabet Med, 2020, 37(8):1230-1233. [32] 王玉莹, 刘蕴玲. 二肽基肽酶4抑制剂对骨代谢影响的研究进展[J]. 中国糖尿病杂志, 2022, 30(2):144-146. [33] GAMBLE J M, DONNAN J R, CHIBRIKOV E, et al. The risk of fragility fractures in new users of dipeptidyl peptidase-4 inhibitors compared to sulfonylureas and other anti-diabetic drugs: a cohort study[J]. Diabetes Res Clin Pract, 2018, 136:159-167. [34] HOU W H, CHANG K C, LI C Y, et al. Dipeptidyl peptidase-4 inhibitor use is associated with decreased risk of fracture in patients with type 2 diabetes: a population-based cohort study[J]. Br J Clin Pharmacol, 2018, 84(9):2029-2039. [35] USTULIN M, PARK S Y, CHOI H, et al. Effect of dipeptidyl peptidase-4 inhibitors on the risk of bone fractures in a Korean population[J]. J Korean Med Sci, 2019, 34(35):e224. [36] FERNANDO K, BAIN S C, HOLMES P, et al. Glucagon-like peptide 1 receptor agonist usage in type 2 diabetes in primary care for the UK and beyond: a narrative review[J]. Diabetes Ther, 2021, 12(9):2267-2288. [37] WU X, LI S, XUE P, et al. Liraglutide, a glucagon-like peptide-1 receptor agonist, facilitates osteogenic proliferation and differentiation in MC3T3-E1 cells through phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), extracellular signal-related kinase (ERK)1/2, and cAMP/protein kinase A (PKA) signaling pathways involving β-catenin[J]. Exp Cell Res, 2017, 360(2):281-291. [38] LI Z, LI S, WANG N, et al. Liraglutide, a glucagon-like peptide-1 receptor agonist, suppresses osteoclastogenesis through the inhibition of NF-κB and MAPK pathways via GLP-1R[J]. Biomed Pharmacother, 2020, 130:110523. [39] DRIESSEN J H, HENRY R M, VAN ONZENOORT H A, et al. Bone fracture risk is not associated with the use of glucagon-like peptide-1 receptor agonists: a population-based cohort analysis[J]. Calcif Tissue Int, 2015, 97(2):104-112. [40] DRIESSEN J H, VAN ONZENOORT H A, STARUP-LINDE J, et al. Use of glucagon-like-peptide 1 receptor agonists and risk of fracture as compared to use of other anti-hyperglycemic drugs[J]. Calcif Tissue Int, 2015, 97(5):506-515. [41] ZHANG Y S, WENG W Y, XIE B C, et al. Glucagon-like peptide-1 receptor agonists and fracture risk: a network meta-analysis of randomized clinical trials[J]. Osteoporos Int, 2018, 29(12):2639-2644. [42] GILBERT M P, MARRE M, HOLST J J, et al. Comparison of the long-term effects of liraglutide and glimepiride monotherapy on bone mineral density in patients with type 2 diabetes[J]. Endocr Pract, 2016, 22(4):406-411. [43] CHENG L, HU Y, LI Y Y, et al. Glucagon-like peptide-1 receptor agonists and risk of bone fracture in patients with type 2 diabetes: a meta-analysis of randomized controlled trials[J]. Diabetes Metab Res Rev, 2019, 35(7):e3168. [44] FERRON M, WEI J, YOSHIZAWA T, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism[J]. Cell, 2010, 142(2):296-308. [45] OGATA N, CHIKAZU D, KUBOTA N, et al. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover[J]. J Clin Invest, 2000, 105(7):935-943. [46] AKUNE T, OGATA N, HOSHI K, et al. Insulin receptor substrate-2 maintains predominance of anabolic function over catabolic function of osteoblasts[J]. J Cell Biol, 2002, 159(1):147-156. [47] LOSADA-GRANDE E, HAWLEY S, SOLDEVILA B, et al. Insulin use and excess fracture risk in patients with type 2 diabetes: a propensity-matched cohort analysis[J]. Sci Rep, 2017, 7(1):3781. [48] WALLANDER M, AXELSSON K F, NILSSON A G, et al. Type 2 diabetes and risk of hip fractures and non-skeletal fall injuries in the elderly: a study from the fractures and fall injuries in the elderly cohort (FRAILCO)[J]. J Bone Miner Res, 2017, 32(3):449-460. [49] CORRAO G, MONZIO COMPAGNONI M, RONCO R, et al. Is switching from oral antidiabetic therapy to insulin associated with an increased fracture risk?[J]. Clin Orthop Relat Res, 2020, 478(5):992-1003. [50] MATTISHENT K, LOKE Y K. Meta-analysis: association between hypoglycaemia and serious adverse events in older patients[J]. J Diabetes Complications, 2016, 30(5):811-818. |
[1] | 丛晓飞, 李铭麟, 石春来. 老年口腔衰弱与多重用药的关系及干预策略[J]. 实用老年医学, 2024, 38(9): 872-875. |
[2] | 李毛毛, 张飞, 沈鑫, 李洁华. 老年人口腔衰弱与跌倒关系的研究进展[J]. 实用老年医学, 2024, 38(9): 876-879. |
[3] | 张飞, 李毛毛, 李铭麟, 王佳贺. 老年人口腔衰弱与抑郁症的相关性研究进展[J]. 实用老年医学, 2024, 38(9): 884-888. |
[4] | 李江, 邱雁, 王婷, 王丹, 虞一帆, 濮玲丽, 卜玲. 老年肺腺癌病人术前全身免疫炎症指数/血清白蛋白与临床病理特征的相关性研究[J]. 实用老年医学, 2024, 38(9): 893-896. |
[5] | 高远, 陈华, 陈珂, 黄文龙. 老年2型糖尿病相关风险因素与骨密度及骨折风险的关系研究[J]. 实用老年医学, 2024, 38(9): 911-915. |
[6] | 李唐波, 马丙涛, 刘琳琳, 徐建强. 老年股骨粗隆间骨折围手术期应用氨基己酸和氨甲环酸的临床疗效比较[J]. 实用老年医学, 2024, 38(9): 926-930. |
[7] | 戴静, 崔焱. 糖化血红蛋白变异性与老年2型糖尿病病人认知功能障碍的相关性分析[J]. 实用老年医学, 2024, 38(9): 931-935. |
[8] | 张星星, 张海洋, 何小菁, 鲁翔. 不同肥胖指标与老年人糖尿病患病风险的调查研究[J]. 实用老年医学, 2024, 38(9): 940-943. |
[9] | 倪红艳, 陈云, 张其兵, 马一鸣, 解成兰. 电针对老年病人下肢骨科手术围术期认知功能及炎症因子的影响[J]. 实用老年医学, 2024, 38(9): 944-947. |
[10] | 李晓敏, 李晓林, 栗杰, 吴蕾, 郝冉冉. 老年病人经肛双气囊小肠镜进镜效率及其影响因素研究[J]. 实用老年医学, 2024, 38(9): 958-961. |
[11] | 蔡荟萃, 陈燕, 王燕, 叶劲军, 朱钰颖. 多形式健康教育模式联合简易呼吸功能锻炼对老年肺癌放疗病人癌因性疲乏及遵医行为的影响[J]. 实用老年医学, 2024, 38(9): 968-972. |
[12] | 李湘, 栗萱, 田应选. 肺衰老与慢性呼吸系统疾病研究现状及进展[J]. 实用老年医学, 2024, 38(8): 761-765. |
[13] | 王小娇, 王宁, 崔宏, 叶童, 王晓明. 运动康复对老年轻中度慢性心力衰竭病人的疗效评价[J]. 实用老年医学, 2024, 38(8): 775-778. |
[14] | 郝世杰, 邹建鹏, 卫晨, 刘清江. 综合呼吸训练对老年帕金森病病人运动减少型构音障碍的影响[J]. 实用老年医学, 2024, 38(8): 783-787. |
[15] | 向超, 罗彩东. 心电图avL导联T波变化对老年冠心病病人冠脉狭窄程度的诊断价值[J]. 实用老年医学, 2024, 38(8): 788-791. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|