[1] WANG T, LU J L, SHI L X, et al. Association of insulin resistance and β-cell dysfunction with incident diabetes among adults in China: a nationwide, population-based, prospective cohort study[J]. Lancet Diabetes Endo, 2020, 8(2):115-124. [2] TOURNADRE A, VIAL G, et al. Sarcopenia[J]. Joint Bone Spine, 2019, 86(3):309-314. [3] OSAKA T, HAMAGUCHI M, et al. Decreased the creatinine to cystatin C ratio is a surrogate maker of sarcopenia in patients with type 2 diabetes[J]. Diabetes Res Clin Pract, 2018, 139:52-58. [4] LIN Y L, CHEN S Y, LAI Y H, et al. Serum creatinine to cystatin C ratio predicts skeletal muscle mass and strength in patients with non-dialysis chronic kidney diseas[J]. Clin Nutr, 2020, 39(8):2435-2441. [5] TABARA Y, KOHARA K, OKADA Y, et al. Creatinine to cystatin C ratio as a marker of skeletal muscle mass in older adults: J-SHIPP study[J]. Clin Nutr, 2020, 39(6):1857-1862. [6] MESINOVIC J, ZENGIN A, COURTEN B D, et al. Sarcopenia and type 2 diabetes mellitus: abidirectional relationship[J]. Diabetes Metab Syndr Obes, 2019, 12:1057-1072. [7] Moon S S. Low skeletal muscle mass is associated with insulin resistance, diabetes, and metabolic syndrome in the Korean population: the Korea National Health and Nutrition Examination Survey (KNHANES) 2009-2010[J]. Endocr J, 2014, 61(1):61-70. [8] HABIB S S, ALKAHTANI S, et al. Sarcopenia coexisting with high adiposity exacerbates insulin resistance and dyslipidemia in Saudi adult men[J]. Diabetes Metab Syndr Obes, 2020, 13:3089-3097. [9] KOSAKA K, KUZUYA T, HAGURAR, et al. Insulin response to oral glucose load is consistently decreased in established non-insulin-dependent diabetes mellitus[J]. Diabetic Med, 1996, 13(9 Suppl 6):109-119. [10] SIM M, VIA D J, et al. Creatinine to cystatin c ratio, a biomarker of sarcopenia measures and falls risk in community-dwelling older women[J]. J Gerontol, 2022, 77(7):1389-1397. [11] QIU S H,CAI X, et al. Normalized creatinine-to-cystatin C ratio and risk of diabetes in middle-aged and older adults: The China Health and Retirement Longitudinal Study[J]. Diabetes Metab, 2022, 46(3):476-485. [12] PHAM H, ROBINSON-COHEN C, et al. Chronic kidney disease, insulin resistance, and incident diabetes in older adults[J]. Clin J Am Soc Nepphrol, 2012, 7(4):588-594. [13] DEFRONZOR A, TRIPATHY D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes[J]. Diabetes Care, 2009, 32(suppl 2):157-163. [14] KANETO H. Pancreatic β-cell glucose toxicity in type 2 diabetes mellitus[J]. Curr Diabetes Rev, 2015, 11(1):2-6. [15] BONNER-WEIR S. Life and death of the pancreatic β cells[J]. Trends Endocrin Met, 2000, 11(9):375-378. [16] SANCHIS-GOMAR F, PEREZ-QUILIS C. The p38 PGC-1α irisin betatrophin axis: exploring new pathways in insulin resistance[J]. Adipocyte, 2014, 3(1):67-68. [17] HARRIES L W, MCCULLOCH L J, et al. A role for SPARC in the moderation of human insulin secretion[J]. PLoS One, 2013, 8(6): e68253. [18] ATORRASAGASTI C, ONORATO A, et al. SPARC is required for the maintenance of glucose homeostasis and insulin secretion in mice[J]. Clin Sci, 2019, 133(2):351-365. [19] PICCA A, CALVANI R. Molecular mechanism and pathogenesis of sarcopenia: an overview[J]. Int J Mol Sci, 2021, 22(6):3032. [20] NAOUR N, FELLAHI S, et al. Potential contribution of adipose tissue to elevated serum cystatin C in human obesity[J]. Obesity: Silver Spring, 2009, 17(12):2121-2126. [21] TAKASU T,TAKAKURA S. Protective effect of ipragliflozinon pancreatic islet cells in obese type 2 diabetic db/db mice[J]. Biol Pharm Bull, 2018, 41(5):761-769. [22] MERZ K E, THURMOND D C. Role of skeletal muscle in insulin resistance and glucose uptake[J]. Compr Physiol, 2020, 10(3):785-809. |