实用老年医学 ›› 2021, Vol. 35 ›› Issue (3): 226-229.doi: 10.3969/j.issn.1003-9198.2021.03.004
于馨蕊, 王莹
收稿日期:
2021-01-08
发布日期:
2021-04-02
通讯作者:
王莹,Email:wangyingdoc@163.com
作者简介:
王莹 教授
Received:
2021-01-08
Published:
2021-04-02
中图分类号:
于馨蕊, 王莹. 外泌体在阿尔茨海默病中的研究进展[J]. 实用老年医学, 2021, 35(3): 226-229.
[1] Alzheimer’s Association. 2015 Alzheimer’s disease facts and figures [J]. Alzheimers Dement, 2015, 11(3): 332-384. [2] SIMONS M, RAPOSO G. Exosomes-vesicular carriers for intercellular communication[J]. Curr Opin Cell Biol, 2009, 21(4): 575-581. [3] FAURÉ J, LACHENAL G, COURT M, et al. Exosomes are released by cultured cortical neurones[J]. Mol Cell Neurosci, 2006, 31(4): 642-648. [4] GUITART K, LOERS G, BUCK F, et al. Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein[J]. Glia, 2016, 64(6): 896-910. [5] FRÖHLICH D, KUO W P, FRÜHBEIS C, et al. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation[J]. Philos Trans R Soc Lond B Biol Sci, 2014, 369(1652): 20130510. [6] DREYER F, BAUR A. Biogenesis and functions of exosomes and extracellular vesicles[M]//FEDERICO M. Lentiviral Vectors and Exosomes as Gene and Protein Delivery Tools. New York: Humana Press, 2016: 201-216. [7] SHARPLES R A, VELLA L J, NISBET R M, et al. Inhibition of γ-secretase causes increased secretion of amyloid precursor protein C-terminal fragments in association with exosomes[J]. FASEB J, 2008, 22(5): 1469-1478. [8] GUPTA A, PULLIAM L. Exosomes as mediators of neuroinflammation[J]. J Neuroinflammation, 2014, 11: 68. [9] CAI Z Y, XIAO M, QUAZI S H, et al. Exosomes: a novel therapeutic target for Alzheimer’s disease? [J]. Neural Regen Res,2018,13(5): 930-935. [10] ALVAREZ-ERVITI L, SEOW Y, YIN H F, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J]. Nat Biotechnol, 2011, 29(4): 341-345. [11] DINKINS M B, DASGUPTA S, WANG G, et al. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease[J].Neurobiol Aging, 2014, 35(8): 1792-1800. [12] SINHA M S, ANSELL-SCHULTZ A, CIVITELLI L, et al. Alzheimer’s disease pathology propagation by exosomes containing toxic amyloid-beta oligomers[J]. Acta Neuropathol, 2018, 136(1): 41-56. [13] VINGTDEUX V, SERGEANT N, BUÉE L. Potential contribution of exosomes to the prion-like propagation of lesions in Alzheimer’s disease[J]. Front Physiol, 2012, 3: 229. [14] BRAAK H, BRAAK E. Neuropathological stageing of Alzheimer-related changes[J]. Acta Neuropathol, 1991, 82(4): 239-259. [15] GUO J L, LEE V M Y. Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles[J]. J Biol Chem, 2011, 286(17): 15317-15331. [16] STANCU I C, VASCONCELOS B, RIS L, et al. Templated misfolding of tau by prion-like seeding along neuronal connections impairs neuronal network function and associated behavioral outcomes in tau transgenic mice[J]. Acta Neuropathol, 2015, 129(6): 875-894. [17] CLAVAGUERA F, BOLMONT T, CROWTHER R A, et al. Transmission and spreading of tauopathy in transgenic mouse brain[J]. Nat Cell Biol, 2009, 11(7): 909-913. [18] CAI Z, HUSSAIN M D, YAN L J. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease[J]. Int J Neurosci, 2014, 124(5): 307-321. [19] CAI Z Y, XIAO M, QUAZI S H, et al. Exosomes: a novel therapeutic target for Alzheimer’s disease[J]. Neural Regen Res, 2018, 13(5): 930-935. [20] WANG G, DINKINS M, HE Q, et al. Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4) potential mechanism of apoptosis induction in Alzheimer disease (AD)[J]. J Biol Chem, 2012, 287(25): 21384-21395. [21] YUYAMA K, SUN H, MITSUTAKE S, et al. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia[J]. J Biol Chem, 2012, 287(14): 10977-10989. [22] WANG S, CESCA F, LOERS G, et al. Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes[J]. J Neurosci, 2011, 31(20): 7275-7290. [23] AN K, KLYUBIN I, KIM Y, et al. Exosomes neutralize synaptic-plasticity-disrupting activity of Aβ assemblies in vivo[J]. Mol Brain, 2013, 6: 47. [24] JIANG L, DONG H, CAO H, et al. Exosomes in pathogenesis, diagnosis, and treatment of Alzheimer’s disease[J]. Med Sci Monit, 2019, 25: 3329-3335. [25] LUGLI G, COHEN A M, BENNETT D A, et al. Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers[J]. PLoS One, 2015, 10(10):e0139233. [26] CHENG L, DOECKE J D, SHARPLES R A, et al. Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment[J]. Mol Psychiatry, 2015, 20(10): 1188-1196. [27] LEWCZUK P, KORNHUBER J, VANMECHELEN E, et al. Amyloid β peptides in plasma in early diagnosis of Alzheimer’s disease: a multicenter study with multiplexing[J]. Exp Neurol, 2010, 223(2): 366-370. [28] LEWCZUK P, ESSELMANN H, GROEMER T W, et al. Amyloid β peptides in cerebrospinal fluid as profiled with surface enhanced laser desorption/ionization time-of-flight mass spectrometry: evidence of novel biomarkers in Alzheimer’s disease[J]. Biol Psychiatry, 2004, 55(5): 524-530. [29] TAKEDA S, SATO N, RAKUGI H, et al. Plasma β-amyloid as potential biomarker of Alzheimer disease: possibility of diagnostic tool for Alzheimer disease[J]. Mol Biosyst, 2010, 6(10): 1760-1766. [30] PERNECZKY R, TSOLAKIDOU A, ARNOLD A, et al. CSF soluble amyloid precursor proteins in the diagnosis of incipient Alzheimer disease[J]. Neurology, 2011, 77(1): 35-38. [31] SCHOONENBOOM N S M, PIJNENBURG Y A L, MULDER C, et al. Amyloid β (1-42) and phosphorylated tau in CSF as markers for early-onset Alzheimer disease[J]. Neurology, 2004, 62(9): 1580-1584. [32] FIANDACA M S, KAPOGIANNIS D, MAPSTONE M, et al. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study[J]. Alzheimers Dement, 2015, 11(6): 600-607.e1. [33] XIN H, LI Y, CHOPP M. Exosomes/miRNAs as mediating cell-based therapy of stroke[J]. Front Cell Neurosci, 2014, 8: 377. [34] XIN H, LI Y, CUI Y, et al. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats[J]. J Cereb Blood Flow Metab, 2013, 33(11): 1711-1715. [35] XIN H, LI Y, LIU Z, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles[J]. Stem Cells, 2013, 31(12): 2737-2746. [36] YUYAMA K, SUN H, SAKAI S, et al. Decreased amyloid-β pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice[J]. J Biol Chem, 2014, 289(35): 24488-24498. [37] CHENG X, ZHANG G, ZHANG L, et al. Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration[J]. J Cell Mol Med, 2018, 22(1): 261-276. [38] MOREL L, REGAN M, HIGASHIMORI H, et al. Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1[J]. J Biol Chem, 2013, 288(10): 7105-7116. |
[1] | 孙丽, 尹卫红, 经俊, 钱夏丽. 亚麻醉剂量艾司氯胺酮对老年脊柱手术病人术后早期认知功能障碍的影响[J]. 实用老年医学, 2024, 38(10): 1039-1043. |
[2] | 董丽华, 李加梅, 郑加平, 雷小晶. 血液生物标志物在阿尔茨海默病早期诊断中的研究进展[J]. 实用老年医学, 2023, 37(12): 1249-1254. |
[3] | 张伟, 王蓉. 衰老作为神经退行性疾病危险因素的科学现状分析[J]. 实用老年医学, 2023, 37(10): 984-988. |
[4] | 时建铨, 郑慧芬, 徐畅, 王变荣. 认知障碍简明评价量表与Addenbrooke认知评估量表Ⅲ诊断阿尔茨海默病的准确性比较[J]. 实用老年医学, 2023, 37(10): 1041-1043. |
[5] | 阎子花, 杜静, 宋竹梅, 张兴梅, 张楠. 痴呆病人病感失认测评工具的研究进展[J]. 实用老年医学, 2023, 37(10): 1059-1063. |
[6] | 王琳琳, 杨诗怡, 徐俊. 人工智能在阿尔茨海默病中的研究进展[J]. 实用老年医学, 2023, 37(9): 869-872. |
[7] | 王敏, 郭文军, 汤忠泉, 赵晓敏, 欧婷, 李云涛. 听力障碍与阿尔茨海默病相关性的Meta分析[J]. 实用老年医学, 2023, 37(9): 915-919. |
[8] | 段景宜, 刘静, 查玉航, 杨巧露, 何海洋, 马亚男, 高海英. 阿尔茨海默病医防融合模式的探索[J]. 实用老年医学, 2023, 37(8): 757-760. |
[9] | 张绍敏, 吴锦晖. COVID-19与阿尔茨海默病的最新研究进展[J]. 实用老年医学, 2023, 37(5): 521-523. |
[10] | 赵璨, 冯美江. 外泌体与阿尔茨海默病的研究进展[J]. 实用老年医学, 2023, 37(4): 335-338. |
[11] | 朱贺, 殷实. 认知障碍与抑郁症关系的研究进展[J]. 实用老年医学, 2023, 37(3): 234-237. |
[12] | 郭晓娟, 刘洁, 王瑾, 陆文惠, 高玲, 屈秋民. 西安地区阿尔茨海默病病人药物依从性调查及影响因素分析[J]. 实用老年医学, 2023, 37(1): 47-50. |
[13] | 张楠, 左文行, 吴锦晖. 缓和医疗干预对老年痴呆病人的影响:一项系统评价及Meta分析[J]. 实用老年医学, 2022, 36(6): 606-611. |
[14] | 刘善雯, 刘春风, 胡华. 特异性睡眠脑电频率在阿尔茨海默病中的研究进展[J]. 实用老年医学, 2022, 36(5): 523-527. |
[15] | 李碧汐, 张亚欣, 刘盼, 宋雨, 李耘, 马丽娜. 老年人肌肉功能与认知功能的相关性研究[J]. 实用老年医学, 2022, 36(4): 386-389. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|