[1] 陈传锋, 何承林, 陈红霞, 等. 我国老年痴呆研究概况[J]. 宁波大学学报(教育科学版), 2012, 34(2): 45-50. [2] SCHELTENS P, DE STROOPER B, KIVIPELTO M, et al. Alzheimer’s disease[J]. Lancet, 2021, 397(10284): 1577-1590. [3] PRVULOVIC D, HAMPEL H. Amyloid beta (Abeta) and phospho-tau (p-tau) as diagnostic biomarkers in Alzheimer’s disease[J]. Clin Chem Lab Med, 2011, 49(3):367-374. [4] GOLDE T E. Alzheimer’s disease - the journey of a healthy brain into organ failure[J]. Mol Neurodegener, 2022, 17(1):18. [5] KALLURI R, LEBLEU V S. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977. [6] HILL A F. Extracellular vesicles and neurodegenerative diseases[J]. J Neurosci, 2019, 39(47):9269-9273. [7] ZHANG T, MA S, LV J, et al. The emerging role of exosomes in Alzheimer’s disease[J]. Ageing Res Rev, 2021, 68: 101321. [8] ISAAC R, REIS F C G, YING W, et al. Exosomes as mediators of intercellular crosstalk in metabolism[J]. Cell Metab, 2021, 33(9): 1744-1762. [9] REZA-ZALDIVAR E E, HERNANDEZ-SAPIENS M A, MINJAREZ B, et al. Potential effects of MSC-derived exosomes in neuroplasticity in Alzheimer’s disease[J]. Front Cell Neurosci, 2018, 12:317. [10] SARDAR SINHA M, ANSELL-SCHULTZ A, CIVITELLI L, et al. Alzheimer’s disease pathology propagation by exosomes containing toxic amyloid-beta oligomers[J]. Acta Neuropathol, 2018, 136(1):41-56. [11] YUYAMA K, IGARASHI Y. Exosomes as carriers of Alzheimer’s amyloid-β[J]. Front Neurosci, 2017, 11:229. [12] YUYAMA K, SUN H, USUKI S, et al. A potential function for neuronal exosomes: sequestering intracerebral amyloid-beta peptide[J]. FEBS Lett, 2015, 589(1):84-88. [13] FALKER C, HARTMANN A, GUETT I, et al. Exosomal cellular prion protein drives fibrillization of amyloid beta and counteracts amyloid beta-mediated neurotoxicity[J]. J Neurochem, 2016, 137(1):88-100. [14] KAUR S, VERMA H, DHIMAN M, et al. Brain exosoes: friend or foe in Alzheimer’s disease?[J]. Mol Neurobiol, 2021, 58(12):6610-6624. [15] GUIX F X. The interplay between aging-associated loss of protein homeostasis and extracellular vesicles in neurodegeneration[J]. J Neurosci Res, 2020, 98(2):262-283. [16] SAMAN S, KIM W, RAYA M, et al. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease[J]. J Biol Chem, 2012, 287(6):3842-3849. [17] LONG X, YAO X, JIANG Q, et al. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury[J]. J Neuroinflammation, 2020, 17(1):89. [18] PANARO M A, BENAMEUR T, PORRO C. Extracellular vesicles miRNA cargo for microglia polarization in traumatic brain injury[J]. Biomolecules, 2020, 10(6):901. [19] GOETZL E J, SCHWARTZ J B, ABNER E L, et al. High complement levels in astrocyte-derived exosomes of Alzheimer disease[J]. Ann Neurol, 2018, 83(3):544-552. [20] ZANJANI H, FINCH C E, KEMPER C, et al. Complement activation in very early Alzheimer disease[J]. Alzheimer Dis Assoc Disord, 2005, 19(2):55-66. [21] MCKEEVER P M, SCHNEIDER R, TAGHDIRI F, et al. MicroRNA expression levels are altered in the cerebrospinal fluid of patients with young-onset Alzheimer’s disease[J]. Mol Neurobiol, 2018, 55(12):8826-8841. [22] GUI Y X, LIU H, ZHANG L S, et al. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease[J]. Oncotarget, 2015, 6(35):37043-37053. [23] JIA L, QIU Q, ZHANG H, et al. Concordance between the assessment of Aβ42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid[J]. Alzheimers Dement, 2019, 15(8):1071-1080. [24] DONG Z, GU H, GUO Q, et al. Profiling of serum exosome miRNA reveals the potential of a miRNA panel as diagnostic biomarker for Alzheimer’s disease[J]. Mol Neurobiol, 2021, 58(7):3084-3094. [25] CAI H, PANG Y, WANG Q, et al. Proteomic profiling of circulating plasma exosomes reveals novel biomarkers of Alzheimer’s disease[J]. Alzheimers Res Ther, 2022, 14(1):181. [26] CHENG L, DOECKE J D, SHARPLES R A, et al. Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment[J]. Mol Psychiatry, 2015, 20(10):1188-1196. [27] GOETZL E J, ABNER E L, JICHA G A, et al. Declining levels of functionally specialized synaptic proteins in plasma neuronal exosomes with progression of Alzheimer’s disease[J]. FASEB J, 2018, 32(2): 888-893. [28] HAO P, LIANG Z, PIAO H, et al. Conditioned medium of human adipose-derived mesenchymal stem cells mediates protection in neurons following glutamate excitotoxicity by regulating energy metabolism and GAP-43 expression[J]. Metab Brain Dis, 2014, 29(1):193-205. [29] DENG Z, WANG J, XIAO Y, et al. Ultrasound-mediated augmented exosome release from astrocytes alleviates amyloid-beta-induced neurotoxicity[J]. Theranostics, 2021, 11(9):4351-4362. [30] CHEN Y A, LU C H, KE C C, et al. Mesenchymal stem cell-derived exosomes ameliorate Alzheimer’s disease pathology and improve cognitive deficits[J]. Biomedicines, 2021, 9(6):594. [31] YANG L Y, ZHAI Y X, HAO Y, et al. The regulatory functionality of exosomes derived from hUMSCs in 3D culture for Alzheimer’s disease therapy[J]. Small, 2020, 16(3):e1906273. [32] ALVAREZ-ERVITI L, SEOW Y, YIN H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J]. Nat Biotechnol, 2011, 29(4):341-345. [33] WEI H, XU Y H, CHEN Q, et al. Mesenchymal stem cell-derived exosomal miR-223 regulates neuronal cell apoptosis[J]. Cell Death Dis, 2020, 11(4):290. [34] MOREL L, REGAN M, HIGASHIMORI H, et al. Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1[J]. J Biol Chem, 2013, 288(10):7105-7116. [35] SHAO J, ZARO J, SHEN Y. Advances in exosome-based drug delivery and tumor targeting: from tissue distribution to intracellular fate[J]. Int J Nanomedicine, 2020, 15:9355-9371. |