实用老年医学 ›› 2022, Vol. 36 ›› Issue (5): 523-527.doi: 10.3969/j.issn.1003-9198.2022.05.023
刘善雯, 刘春风, 胡华
收稿日期:
2021-07-13
出版日期:
2022-05-20
发布日期:
2022-05-27
通讯作者:
胡华,Email:sz_huhua@126.com
基金资助:
Received:
2021-07-13
Online:
2022-05-20
Published:
2022-05-27
中图分类号:
刘善雯, 刘春风, 胡华. 特异性睡眠脑电频率在阿尔茨海默病中的研究进展[J]. 实用老年医学, 2022, 36(5): 523-527.
[1] ANAND A, PATIENCE A A, SHARMA N, et al. The present and future of pharmacotherapy of Alzheimer’s disease: a comprehensive review[J]. Eur J Pharmacol, 2017, 815: 364-375. [2] WANG C, HOLTZMAN D M. Bidirectional relationship between sleep and Alzheimer’s disease: role of amyloid, tau, and other factors[J]. Neuropsychopharmacology, 2020, 45(1): 104-120. [3] RINGMAN J M, MEDINA L D, RODRIGUEZ-AGUDELO Y, et al. Current concepts of mild cognitive impairment and their applicability to persons at-risk for familial Alzheimer’s disease[J]. Curr Alzheimer Res, 2009, 6(4): 341-346. [4] HENEKA M T, CARSON M J, EL KHOURY J, et al. Neuroinflammation in Alzheimer’s disease[J]. Lancet Neurol, 2015, 14(4): 388-405. [5] LIM A S, KOWGIER M, YU L, et al. Sleep fragmentation and the risk of incident Alzheimer’s disease and cognitive decline in older persons[J]. Sleep, 2013, 36(7): 1027-1032. [6] ZHANG F, ZHONG R, LI S, et al. Alteration in sleep architecture and electroencephalogram as an early sign of Alzheimer’s disease preceding the disease pathology and cognitive decline[J]. Alzheimers Dement, 2019, 15(4): 590-597. [7] JU Y-E S, MCLELAND J S, TOEDEBUSCH C D, et al. Sleep quality and preclinical Alzheimer disease[J]. JAMA Neurol, 2013, 70(5): 587-593. [8] WINER J R, MANDER B A, HELFRICH R F, et al. Sleep as a potential biomarker of tau and β-Amyloid burden in the human brain[J]. J Neurosci, 2019, 39(32): 6315-6324. [9] OOMS S, OVEREEM S, BESSE K, et al. Effect of 1 night of total sleep deprivation on cerebrospinal fluid beta-amyloid 42 in healthy middle-aged men: a randomized clinical trial[J]. JAMA Neurol, 2014, 71(8): 971-977. [10] NIWA Y, KANDA G N, YAMADA R G, et al. Muscarinic acetylcholine receptors chrm1 and chrm3 are essential for REM Sleep[J]. Cell Rep, 2018, 24(9): 2231-2247. [11] LEISER S C, LI Y, PEHRSON A L, et al. Serotonergic regulation of prefrontal cortical circuitries involved in cognitive processing: a review of individual 5-ht receptor mechanisms and concerted effects of 5-ht receptors exemplified by the multimodal antidepressant vortioxetine[J]. ACS Chem Neurosci, 2015, 6(7): 970-986. [12] GRAU-RIVERA O, OPERTO G, FALCON C, et al. Association between insomnia and cognitive performance, gray matter volume, and white matter microstructure in cognitively unimpaired adults[J]. Alzheimers Res Ther, 2020, 12(1): 4. [13] LI K, LUO X, ZENG Q, et al. Interactions between sleep disturbances and Alzheimer’s disease on brain function: a preliminary study combining the static and dynamic functional MRI[J]. Sci Rep, 2019, 9(1): 19064. [14] LLORET M A, CERVERA-FERRI A, NEPOMUCENO M, et al. Is sleep disruption a cause or consequence of Alzheimer’s disease? Reviewing its possible role as a biomarker[J]. Int J Mol Sci, 2020, 21(3):1168. [15] COX R, SCHAPIRO A C, MANOACH D S, et al. Individual differences in frequency and topography of slow and fast sleep spindles[J]. Front Hum Neurosci, 2017, 11: 433. [16] DAVIDSON T J, KLOOSTERMAN F, WILSON M A. Hippocampal replay of extended experience[J]. Neuron, 2009, 63(4): 497-507. [17] BANDARABADI M, BOYCE R, GUTIERREZ HERRERA C, et al. Dynamic modulation of theta-gamma coupling during rapid eye movement sleep[J]. Sleep, 2019, 42(12) :zsz182. [18] NOFZINGER E A, BUYSSE D J, GERMAIN A, et al. Functional neuroimaging evidence for hyperarousal in insomnia[J]. Am J Psychiatry, 2004, 161(11): 2126-2128. [19] PRINZ P N, PESKIND E R, VITALIANO P P, et al. Changes in the sleep and waking EEGs of nondemented and demented elderly subjects[J]. J Am Geriatr Soc, 1982, 30(2): 86-93. [20] MANDER B A, MARKS S M, VOGEL J W, et al. Beta-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation[J]. Nat Neurosci, 2015, 18(7): 1051-1057. [21] LUCEY B P, MCCULLOUGH A, LANDSNESS E C, et al. Reduced non-rapid eye movement sleep is associated with tau pathology in early Alzheimer’s disease[J]. Sci Transl Med, 2019, 11(474) :eaau6550. [22] KAM K, PAREKH A, SHARMA R A, et al. Sleep oscillation-specific associations with Alzheimer’s disease CSF biomarkers: novel roles for sleep spindles and tau[J]. Mol Neurodegener, 2019, 14(1): 10. [23] WINER J R, MANDER B A, HELFRICH R F, et al. Sleep as a potential biomarker of tau and beta-amyloid burden in the human brain[J]. J Neurosci, 2019, 39(32): 6315-6324. [24] SONG Y, BLACKWELL T, YAFFE K, et al. Relationships between sleep stages and changes in cognitive function in older men: the MrOS Sleep Study[J]. Sleep, 2015, 38(3): 411-421. [25] MARSHALL L, HELGADOTTIR H, MOLLE M, et al. Boosting slow oscillations during sleep potentiates memory[J]. Nature, 2006, 444(7119): 610-613. [26] DEL FELICE A, MAGALINI A, MASIERO S. Slow-oscillatory transcranial direct current stimulation modulates memory in temporal lobe epilepsy by altering sleep spindle generators: a possible rehabilitation tool[J]. Brain Stimul, 2015, 8(3): 567-573. [27] SAHLEM G L, BADRAN B W, HALFORD J J, et al. Oscillating square wave transcranial direct current stimulation (tDCS) delivered during slow wave sleep does not improve declarative memory more than sham: a randomized sham controlled crossover study[J]. Brain Stimul, 2015, 8(3): 528-534. [28] BAYER L, CONSTANTINESCU I, PERRIG S, et al. Rocking synchronizes brain waves during a short nap[J]. Curr Biol, 2011, 21(12): R461-R462. [29] TRAUER J M, QIAN M Y, DOYLE J S, et al. Cognitive behavioral therapy for chronic insomnia: a systematic review and meta-analysis[J]. Ann Intern Med, 2015, 163(3): 191-204. |
[1] | 孙丽, 尹卫红, 经俊, 钱夏丽. 亚麻醉剂量艾司氯胺酮对老年脊柱手术病人术后早期认知功能障碍的影响[J]. 实用老年医学, 2024, 38(10): 1039-1043. |
[2] | 董丽华, 李加梅, 郑加平, 雷小晶. 血液生物标志物在阿尔茨海默病早期诊断中的研究进展[J]. 实用老年医学, 2023, 37(12): 1249-1254. |
[3] | 张伟, 王蓉. 衰老作为神经退行性疾病危险因素的科学现状分析[J]. 实用老年医学, 2023, 37(10): 984-988. |
[4] | 时建铨, 郑慧芬, 徐畅, 王变荣. 认知障碍简明评价量表与Addenbrooke认知评估量表Ⅲ诊断阿尔茨海默病的准确性比较[J]. 实用老年医学, 2023, 37(10): 1041-1043. |
[5] | 阎子花, 杜静, 宋竹梅, 张兴梅, 张楠. 痴呆病人病感失认测评工具的研究进展[J]. 实用老年医学, 2023, 37(10): 1059-1063. |
[6] | 王琳琳, 杨诗怡, 徐俊. 人工智能在阿尔茨海默病中的研究进展[J]. 实用老年医学, 2023, 37(9): 869-872. |
[7] | 王敏, 郭文军, 汤忠泉, 赵晓敏, 欧婷, 李云涛. 听力障碍与阿尔茨海默病相关性的Meta分析[J]. 实用老年医学, 2023, 37(9): 915-919. |
[8] | 段景宜, 刘静, 查玉航, 杨巧露, 何海洋, 马亚男, 高海英. 阿尔茨海默病医防融合模式的探索[J]. 实用老年医学, 2023, 37(8): 757-760. |
[9] | 张绍敏, 吴锦晖. COVID-19与阿尔茨海默病的最新研究进展[J]. 实用老年医学, 2023, 37(5): 521-523. |
[10] | 赵璨, 冯美江. 外泌体与阿尔茨海默病的研究进展[J]. 实用老年医学, 2023, 37(4): 335-338. |
[11] | 朱贺, 殷实. 认知障碍与抑郁症关系的研究进展[J]. 实用老年医学, 2023, 37(3): 234-237. |
[12] | 郭晓娟, 刘洁, 王瑾, 陆文惠, 高玲, 屈秋民. 西安地区阿尔茨海默病病人药物依从性调查及影响因素分析[J]. 实用老年医学, 2023, 37(1): 47-50. |
[13] | 张楠, 左文行, 吴锦晖. 缓和医疗干预对老年痴呆病人的影响:一项系统评价及Meta分析[J]. 实用老年医学, 2022, 36(6): 606-611. |
[14] | 李碧汐, 张亚欣, 刘盼, 宋雨, 李耘, 马丽娜. 老年人肌肉功能与认知功能的相关性研究[J]. 实用老年医学, 2022, 36(4): 386-389. |
[15] | 刘雅玲, 潘晓东, 周辰, 束婷婷. 慢性炎症及端粒长度与阿尔茨海默病病人认知功能的相关性研究[J]. 实用老年医学, 2022, 36(3): 284-287. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|