Practical Geriatrics ›› 2022, Vol. 36 ›› Issue (4): 413-416.doi: 10.3969/j.issn.1003-9198.2022.04.023
Previous Articles Next Articles
Received:
2021-06-02
Online:
2022-04-20
Published:
2022-04-26
CLC Number:
[1] TIAN B, MANLEY J L. Alternative polyadenylation of mRNA precursors[J].Nat Rev Mol Cell Biol, 2017, 18(1): 18-30. [2] TURNER R E, PATTISON A D, BEILHARZ T H.Alternative polyadenylation in the regulation and dysregulation of gene expression[J]. Semin Cell Dev Biol, 2018, 75: 61-69. [3] ZHANG H, LEE J Y, TIAN B. Biased alternative polyadenylation in human tissues[J] . Genome Biol, 2005, 6(12): R100. [4] ELKON R, UGALDE A P, AGAMI R. Alternative cleavage and polyadenylation: extent, regulation and function[J] . Nat Rev Genet, 2013, 14(7): 496-506. [5] DANTONEL J C, MURTHY K G, MANLEY J L, et al. Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA[J]. Nature, 1997, 389(6649): 399-402. [6] CLERICI M, FAINI M, AEBERSOLD R, et al. Structural insights into the assembly and polyA signal recognition mechanism of the human CPSF complex[J]. Elife, 2017, 6: e33111. [7] MACDONALD C C, WILUSZ J, SHENK T. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location[J]. Mol Cell Biol, 1994, 14(10): 6647-6654. [8] VENKATARAMAN K, BROWN K M, GILMARTIN G M. Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition[J]. Genes Dev, 2005, 19(11): 1315-1327. [9] BRUMBAUGH J B, STEFANO D, WANG X, et al. Nudt21 controls cell fate by connecting alternative polyadenylation to chromatin signaling[J]. Cell, 2018, 172(3): 629-631. [10] LI W, LI W, LAISHRAM R S, et al. Distinct regulation of alternative polyadenylation and gene expression by nuclear poly(A) polymerases[J]. Nucleic Acids Res, 2017, 45(15): 8930-8942. [11] DE KLERK E, VENEMA A, ANVAR S Y, et al. Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation[J]. Nucleic Acids Res, 2012, 40(18): 9089-9101. [12] LIN C L, EVANS V, SHEN S, et al.The nuclear experience of CPEB: implications for RNA processing and translational control[J] Rna, 2010, 16(2): 338-348. [13] MOORE-MORRIS T, VAN VLIET P P, ANDELFINGER G, et al. Role of epigenetics in cardiac development and congenital diseases[J]. Physiol Rev, 2018, 98(4): 2453-2475. [14] BLECH-HERMONI Y T, DASGUPTA R, CORAM J, et al. Identification of targets of CUG-BP, Elav-Like Family Member 1(CELF1) regulation in embryonic heart muscle[J]. PLoS One, 2016, 11(2): e0149061. [15] QIAN L, WYTHE J D, LIU J, et al. Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species[J]. J Cell Biol, 2011, 193(7): 1181-1196. [16] NIMURA K, YAMAMOTO M, TAKEICHI M, et al. Regulation of alternative polyadenylation by Nkx2-5 and Xrn2 during mouse heart development[J]. Elife, 2016, 5: e16030. [17] BRANNAN K, KIM H, ERICKSON B, et al. mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription[J]. Mol Cell, 2012, 46(3): 311-324. [18] NISHII K, MORIMOTO S, MINAKAMI R, et al. Targeted disruption of the cardiac troponin T gene causes sarcomere disassembly and defects in heartbeat within the early mouse embryo[J]. Dev Biol, 2008, 322(1): 65-73. [19] HE Y, HARA H, NÚÑEZ G. Mechanism and regulation of NLRP3 inflammasome activation[J]. Trends Biochem Sci, 2016, 41(12): 1012-1021. [20] KANG J G, AMAR M J, REMALEY A T, et al. Zinc finger protein tristetraprolin interacts with CCL3 mRNA and regulates tissue inflammation[J]. J Immunol, 2011, 187(5): 2696-2701. [21] HANEKLAUS M, O′NEIL J D, CLARK A R, et al. The RNA-binding protein tristetraprolin(TTP) is a critical negative regulator of the NLRP3 inflammasome[J]. J Biol Chem, 2017, 292(17): 6869-6881. [22] LV L, LI T, LI X, et al. The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214[J]. Mol Ther Nucleic Acids, 2018, 10: 387-397. [23] SOETANTO R, HYNES C J, PATEL H R, et al. Role of miRNAs and alternative mRNA 3′-end cleavage and polyadenylation of their mRNA targets in cardiomyocyte hypertrophy[J]. Biochim Biophys Acta, 2016, 1859(5): 744-756. [24] SHEEHY S P, HUANG S, PARKER K K.Time-warped comparison of gene expression in adaptive and maladaptive cardiac hypertrophy[J]. Circ Cardiovasc Genet, 2009, 2(2): 116-124. [25] KUMAR R R, NARASIMHAN M, SHANMUGAM G, et al. Abrogation of Nrf2 impairs antioxidant signaling and promotes atrial hypertrophy in response to high-intensity exercise stress[J]. J Transl Med, 2016, 14: 86. [26] KANDALA D T, MOHAN N, VIVEKANAND A, et al. CstF-64 and 3′-UTR cis-element determine Star-PAP specificity for target mRNA selection by excluding PAPα[J]. Nucleic Acids Res, 2016, 44(2): 811-823. [27] MOHAN N, KUMAR V, KANDALA D T, et al. A Splicing-independent function of RBM10 controls specific 3′ UTR processing to regulate cardiac hypertrophy[J]. Cell Rep, 2018, 24(13): 3539-3553. [28] CREEMERS E E, BAWAZEER A, UGALDE A P, et al. Genome-wide polyadenylation maps reveal dynamic mRNA 3′-end formation in the failing human heart[J].Circ Res, 2016, 118(3): 433-438. |
[1] | . [J]. Practical Geriatrics, 2024, 38(10): 979-982. |
[2] | GU Chonghuai, XIANG Xuejun, ZHENG Yuanxi, QIAO Rui, LIN Song. Efficacy of dapagliflozin in elderly patients undergoing coronary intervention with type 2 diabetes mellitus and ejection fraction reduced heart failure [J]. Practical Geriatrics, 2024, 38(10): 1025-1029. |
[3] | LIU Jin, HUANG Yanqiu, ZHU Yi, ZHUO Lili. Effects of sacubitril valsartan sodium in elderly patients with chronic heart failure [J]. Practical Geriatrics, 2024, 38(10): 1030-1033. |
[4] | XU Shouyong, YUAN Yong. Study on feasibility of dual-low-dose CT coronary angiography in elderly patients [J]. Practical Geriatrics, 2024, 38(10): 1054-1058. |
[5] | LIU Lin, WU Qing, ZHANG Jing, MAO Fangying, YU Lu, REN Yiting, FANG Ting. Status and influencing factors of symptom perception in elderly patients with heart failure [J]. Practical Geriatrics, 2024, 38(5): 461-437. |
[6] | WANG Chao, CHEN Xiaojun. Influence of tropical climate on blood pressure, peripheral blood microRNA-146a and Hcy in elderly patients with essential hypertension from northeast China [J]. Practical Geriatrics, 2024, 38(5): 470-437. |
[7] | LIU Qianhui, YAO Zijun, HE Yuli, XU Yunfan, WU Jun. Effects of HbA1c level on cardiac structure and function in elderly patients with type 2 diabetes mellitus and chronic heart failure [J]. Practical Geriatrics, 2024, 38(5): 491-437. |
[8] | ZHANG Lili, LI Jing, DING Linfeng, SUN Jingxian, CAI Jingbo. Predictive value of carotid atherosclerosis plaque for ischemic stroke events in patients with nonvalvular atrial fibrillation [J]. Practical Geriatrics, 2024, 38(3): 236-239. |
[9] | ZHA Zhimin, LIU Huan, WANG Xiangming, LI Qiushuang, GUO Yan. Effect of cardiac valve calcification on prognosis of elderly patients with coronary heart disease [J]. Practical Geriatrics, 2024, 38(3): 245-250. |
[10] | . [J]. Practical Geriatrics, 2024, 38(3): 299-303. |
[11] | . [J]. Practical Geriatrics, 2024, 38(3): 308-311. |
[12] | CHENG Qing, XU Yan, CHEN Guofei, DENG Xinyue. Correlation of serum angiotensin Ⅱ and nitric oxide levels with cognitive dysfunction in elderly patients with chronic heart failure [J]. Practical Geriatrics, 2024, 38(2): 132-135. |
[13] | ZHANG Ying, XIE Ling, YE Jiaqi, QIANG Wenhui, YAN Xiaoyun, JIANG Ying, ZHANG Qing. Correlation between laminin and major adverse cardiovascular events in elderly patients with acute myocardial infarction [J]. Practical Geriatrics, 2024, 38(2): 149-151. |
[14] | DUAN Lidan, XI Ling, XU Jianping. Correlation between TyG index and left ventricular diastolic function in elderly hypertensive patients with normal ejection fraction [J]. Practical Geriatrics, 2024, 38(2): 152-156. |
[15] | FAN Ting-yong, YUAN Li, YANG Xiao-ling, CHEN Qian. Assessment effect of Caprini scale on venous thromboembolism in elderly patients with diabetes [J]. Practical Geriatrics, 2023, 37(12): 1233-1237. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|