Practical Geriatrics ›› 2025, Vol. 39 ›› Issue (9): 963-967.doi: 10.3969/j.issn.1003-9198.2025.09.021
Previous Articles Next Articles
ZHOU Dan, WEI Kexin, DENG Shu, HE Rui
Received:
2025-01-05
Online:
2025-09-20
Published:
2025-09-19
Contact:
DENG Shu, Email: dengshu9624@tmmu.edu.cn
CLC Number:
ZHOU Dan, WEI Kexin, DENG Shu, HE Rui. Research progress on the prevention and treatment of venous thromboembolism in elderly using artificial intelligence and wearable devices[J]. Practical Geriatrics, 2025, 39(9): 963-967.
[1] TRAGAKI A.From ‘demographic bomb’ to ‘silver tsunami’: navigating global population shifts[J]. Eur View, 2024, 23(1): 22-30. [2] MISMETTI P, BERTOLETTI L, GOUIN I, et al. Elderly patients with venous thromboembolism: insights from the RIETE registry[J]. Presse Med, 2024, 53(4): 104246. [3] OLEKSIUK-BÓJKO M, LISOWSKA A. Venous thromboembolism: why is it still a significant health problem?[J]. Adv Med Sci, 2023, 68(1): 10-20. [4] 崔宇浩, 黄立新. 全膝置换术后下肢深静脉血栓形成因素的研究进展[J]. 中华养生保健, 2024, 42(23): 66-69. [5] CHIASAKUL T, LAM B D, MCNICHOL M, et al. Artificial intelligence in the prediction of venous thromboembolism: a systematic review and pooled analysis[J]. Eur J Haematol, 2023, 111(6): 951-962. [6] GUAN C, MA F, CHANG S, et al. Interpretable machine learning models for predicting venous thromboembolism in the intensive care unit: an analysis based on data from 207 centers[J]. Crit Care, 2023, 27(1): 406. [7] JAFLEH E A, ALNAQBI F A, ALMAEENI H A, et al. The role of wearable devices in chronic disease monitoring and patient care: a comprehensive review[J]. Cureus, 2024, 16(9): e68921. [8] ENGBERS M J, BLOM J W, CUSHMAN M, et al. Functional impairment and risk of venous thrombosis in older adults[J]. J Am Geriatr Soc, 2017, 65(9): 2003-2008. [9] KEKADE S, HSEIEH C H, ISLAM M M, et al. The usefulness and actual use of wearable devices among the elderly population[J]. Comput Methods Programs Biomed, 2018, 153: 137-159. [10] GARCIA REYES E P, KELLY R, BUCHANAN G, et al. Understanding older adults’ experiences with technologies for health self-management: interview study[J]. JMIR Aging, 2023, 6: e43197. [11] AN R, SHEN J, WANG J, et al. A scoping review of methodologies for applying artificial intelligence to physical activity interventions[J]. J Sport Health Sci, 2024, 13(3): 428-441. [12] 柏霞, 潘力生, 查振平, 等. 静脉血栓栓塞症物理预防研究进展[J]. 当代护士:中旬刊, 2024, 31(2): 5-8. [13] DELGADO-GONZALO R, HUBBARD J, RENEVEY P, et al. Real-time gait analysis with accelerometer-based smart shoes[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2017, 2017: 148-148c. [14] TURPPA E, KORTELAINEN J M, ANTROPOV O, et al. Vital sign monitoring using FMCW radar in various sleeping scenarios[J]. Sensors, 2020, 20(22): 6505. [15] 刘欢欢, 孟虎, 王朝晖. 适老化智能可穿戴设计研究进展及发展趋势[J]. 纺织学报, 2024, 45(3): 236-243. [16] ZAKI H A, ALBAROUDI B, SHABAN E E, et al. Deep venous thrombosis (DVT) diagnostics: gleaning insights from point-of-care ultrasound (PoCUS) techniques in emergencies: a systematic review and meta-analysis[J]. Ultrasound J, 2024, 16(1): 37. [17] ZHANG Z, ZHANG R, CHANG C W, et al. iWRAP: a theranostic wearable device with real-time vital monitoring and auto-adjustable compression level for venous thromboembolism[J]. IEEE Trans Biomed Eng, 2021, 68(9): 2776-2786. [18] YORKGITIS B K, BERNDTSON A E, CROSS A, et al. American Association for the Surgery of Trauma/American College of Surgeons-Committee on Trauma Clinical Protocol for inpatient venous thromboembolism prophylaxis after trauma[J]. J Trauma Acute Care Surg, 2022, 92(3): 597-604. [19] 宋珅,衡佳鸣,王宁浩,等.可穿戴超声系统的研究进展[J].应用声学,2024,43(3):678-688. [20] 张敏, 修坤皓, 孙敬尧, 等. 柔性可穿戴压电超声传感器研究进展[J]. 计测技术, 2024, 44(3): 72-83. [21] 王光明,柏正尧, 宋帅, 等. 阿尔茨海默病辅助诊断的多模态数据融合轻量级网络[J]. 浙江大学学报(工学版), 2025, 59(1): 39-48. [22] SHENG W, WANG X, XU W, et al. Development and validation of machine learning models for venous thromboembolism risk assessment at admission: a retrospective study[J]. Front Cardiovasc Med, 2023, 10: 1198526. [23] MOSHAWRAB M, ADDA M, BOUZOUANE A, et al. Smart wearables for the detection of cardiovascular diseases: a systematic literature review[J]. Sensors, 2023, 23(2): 828. [24] 徐佳诗,吴巧英.柔性织物传感器在智能袜中的应用研究进展[J].现代纺织技术,2024,32(11): 1-14. [25] 徐建光, 王彤, 单春雷, 等. 虚拟现实技术应用于感觉-运动功能康复的专家共识[J]. 中国康复医学杂志, 2024, 39(4): 461-470. [26] 刘亚国. 基于智能可穿戴设备的实时健康监测系统[J]. 软件工程与应用, 2022(5): 959-967. [27] 钱文君, 沈晴霓, 吴鹏飞, 等. 大数据计算环境下的隐私保护技术研究进展[J]. 计算机学报, 2022, 45(4): 669-701. [28] LAM B D, CHRYSAFI P, CHIASAKUL T, et al. Machine learning natural language processing for identifying venous thromboembolism: systematic review and meta-analysis[J]. Blood Adv, 2024, 8(12): 2991-3000. [29] PATEL S, PARK H, BONATO P, et al. A review of wearable sensors and systems with application in rehabilitation[J]. J Neuroeng Rehabil, 2012, 9: 21. [30] WANG G, HAN B, DAI G, et al. Role of physical activity and sedentary behavior in venous thromboembolism: a systematic review and dose-response meta-analysis[J]. Sci Rep, 2024, 14(1): 22088. [31] 杨鑫鑫, 郭清, 王晓迪, 等. 近十年我国可穿戴设备在健康管理领域的研究现状及发展趋势[J]. 中国全科医学, 2023, 26(12): 1513-1519. [32] GUPTA A, LAM B D, ZERBEY S, et al. Artificial intelligence meets venous thromboembolism: informaticians’ insights on diagnosis, prevention, and management[J]. Blood Vessel Thromb Hemost, 2024, 1(4): 100031. [33] SPYROPOULOS A C, GOLDIN M, KOULAS I, et al. Universal EHRs clinical decision support for thromboprophylaxis in medical inpatients: a cluster randomized trial[J]. JACC Adv, 2023, 2(8): 100597. [34] 麻琛彬, 徐浩然, 李德玉, 等. 穿戴式生理参数监测及其临床应用研究进展[J]. 生物医学工程学杂志, 2021, 38(3): 583-593. [35] 彭仲康, 崔兴然, 张政波, 等. 可穿戴设备: 评估与监测人体生理状态的展望[J]. 生物医学工程学杂志, 2023, 40(6): 1045-1052. [36] ROBERTS L M, JAEGER B C, BAPTISTA L C, et al. Wearable technology to reduce sedentary behavior and CVD risk in older adults: a pilot randomized clinical trial[J]. Clin Interv Aging, 2019, 14: 1817-1828. [37] SHIWANI T, RELTON S, EVANS R, et al. New horizons in artificial intelligence in the healthcare of older people[J]. Age Ageing, 2023, 52(12): afad219. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|