Practical Geriatrics ›› 2025, Vol. 39 ›› Issue (9): 957-962.doi: 10.3969/j.issn.1003-9198.2025.09.020
Previous Articles Next Articles
CHEN Yapeng, HU Jiawei, KONG Xiangquan, ZHANG Junjie
Received:
2025-04-25
Online:
2025-09-20
Published:
2025-09-19
Contact:
ZHANG Junjie, Email: jameszll@163.com
CLC Number:
CHEN Yapeng, HU Jiawei, KONG Xiangquan, ZHANG Junjie. Mechanisms of ferroptosis in cardiovascular diseases[J]. Practical Geriatrics, 2025, 39(9): 957-962.
[1] ROTH G A, MENSAH G A, JOHNSON C O, et al. Globalburden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76(25): 2982-3021. [2] XU W, LEE A L, LAM C L K, et al. Benefits and risks associated with statin therapy for primary prevention in old and very old adults: real-world evidence from a target trial emulation study[J]. Ann Intern Med, 2024, 177(6): 701-710. [3] ABDELLATIF M, SCHMID S T, FUERLINGER A, et al. Anti-ageing interventions for the treatment of cardiovascular disease[J]. Cardiovasc Res, 2024: cvae177. [4] DEL RE D P, AMGALAN D, LINKERMANN A, et al. Fundamental mechanisms of regulated cell death and implications for heart disease[J]. Physiol Rev, 2019, 99(4): 1765-1817. [5] ZHENG J, CONRAD M. Ferroptosis: when metabolism meets cell death[J]. Physiol Rev, 2025, 105(2): 651-706. [6] DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. [7] QIN Y, QIAO Y, WANG D, et al. Ferritinophagy and ferroptosis in cardiovascular disease:mechanisms and potential applications[J]. Biomed Pharmacother, 2021, 141: 111872. [8] HOU W, XIE Y, SONG X, et al. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy, 2016, 12(8): 1425-1428. [9] KERINS M J, OOI A. The roles of NRF2 in modulating cellular iron homeostasis[J]. Antioxid Redox Signal, 2018, 29(17): 1756-1773. [10] ANANDHAN A, DODSON M, SHAKYA A, et al. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8[J]. Sci Adv, 2023, 9(5): eade9585. [11] ZHAO Z. Hydroxyl radical generations form the physiologically relevant Fenton-like reactions[J]. Free Radic Biol Med, 2023, 208: 510-515. [12] KAGAN V E, MAO G, QU F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90. [13] KOPPULA P, ZHUANG L, GAN B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8): 599-620. [14] LEWERENZ J, HEWETT S J, HUANG Y, et al. The cystine/glutamate antiporter system x(c) (-) in health and disease: from molecular mechanisms to novel therapeutic opportunities[J]. Antioxid Redox Signal, 2013, 18(5): 522-555. [15] KOPPULA P, ZHANG Y, ZHUANG L, et al. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer[J]. Cancer Commun:Lond, 2018, 38(1): 12. [16] TRIMM E, RED-HORSE K. Vascular endothelial cell development and diversity[J]. Nat Rev Cardiol, 2023, 20(3): 197-210. [17] XU S, ILYAS I, LITTLE P J, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies[J]. Pharmacol Rev, 2021, 73(3): 924-967. [18] BAI T, LI M, LIU Y, et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell[J]. Free Radic Biol Med, 2020, 160: 92-102. [19] MA H, HUANG Y, TIAN W, et al. Endothelial transferrin receptor 1 contributes to thrombogenesis through cascade ferroptosis[J]. Redox Biol, 2024, 70: 103041. [20] QIN X, ZHANG J, WANG B, et al. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells[J]. Autophagy, 2021, 17(12): 4266-4285. [21] MIANO J M, FISHER E A, MAJESKY M W. Fate and state of vascular smooth muscle cells in atherosclerosis[J]. Circulation, 2021, 143(21): 2110-2116. [22] YE Y, CHEN A, LI L, et al. Repression of the antiporter SLC7A11/glutathione/glutathione peroxidase 4 axis drives ferroptosis of vascular smooth muscle cells to facilitate vascular calcification[J]. Kidney Int, 2022, 102(6): 1259-1275. [23] ZHANG F, LI K, ZHANG W, et al. Ganglioside GM3 protects against abdominal aortic aneurysm by suppressing ferroptosis[J]. Circulation, 2024, 149(11): 843-859. [24] SUN D Y, WU W B, WU J J, et al. Pro-ferroptotic signaling promotes arterial aging via vascular smooth muscle cell senescence[J]. Nat Commun, 2024, 15(1): 1429. [25] FANG X, ARDEHALI H, MIN J, et al. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease[J]. Nat Rev Cardiol, 2023, 20(1): 7-23. [26] WANG X, CHEN X, ZHOU W, et al. Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways[J]. Acta Pharm Sin B, 2022, 12(2): 708-722. [27] WANG B, JIN Y, LIU J, et al. EP1 activation inhibits doxorubicin-cardiomyocyte ferroptosis via Nrf2[J]. Redox Biol, 2023, 65: 102825. [28] CAI W, LIU L, SHI X, et al. Alox15/15-HpETE aggravates myocardial ischemia-reperfusion injury by promoting cardiomyocyte ferroptosis[J]. Circulation, 2023, 147(19): 1444-1460. [29] KONG P, CUI Z Y, HUANG X F, et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention[J]. Signal Transduct Target Ther, 2022, 7(1): 131. [30] DAMLUJI A A, VAN DIEPEN S, KATZ J N, et al. Mechanical complications of acute myocardial infarction: a scientific statement from the American Heart Association[J]. Circulation, 2021, 144(2): e16-e35. [31] PARK T J, PARK J H, LEE G S, et al. Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes[J]. Cell Death Dis, 2019, 10(11): 835. [32] YU Q, ZHANG N, GAN X, et al. EGCG attenuated acute myocardial infarction by inhibiting ferroptosis via miR-450b-5p/ACSL4 axis[J]. Phytomedicine, 2023, 119: 154999. [33] MIAO M, CAO S, TIAN Y, et al. Potential diagnostic biomarkers: 6 cuproptosis- and ferroptosis-related genes linking immune infiltration in acute myocardial infarction[J]. Genes Immun, 2023, 24(4): 159-170. [34] XIANG Q, YI X, ZHU X H, et al. Regulated cell death in myocardial ischemia-reperfusion injury[J]. Trends Endocrinol Metab, 2024, 35(3): 219-234. [35] TANG L J, LUO X J, TU H, et al. Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(2): 401-410. [36] DODSON M, CASTRO-PORTUGUEZ R, ZHANG D D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis[J]. Redox Biol, 2019, 23: 101107. [37] XU S, WU B, ZHONG B, et al. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/System xc-/glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis[J]. Bioengineered, 2021, 12(2): 10924-10934. [38] MOE G W, MARÍN-GARCÍA J. Role of cell death in the progression of heart failure[J]. Heart Fail Rev, 2016, 21(2): 157-167. [39] HAN Q, SHI J, YU Y, et al. Calycosin alleviates ferroptosis and attenuates doxorubicin-induced myocardial injury via the Nrf2/SLC7A11/GPX4 signaling pathway[J]. Front Pharmacol, 2024, 15: 1497733. [40] LI N, JIANG W, WANG W, et al. Ferroptosis and its emerging roles in cardiovascular diseases[J]. Pharmacol Res, 2021, 166: 105466. [41] RUAN Y, ZHANG L, ZHANG L, et al. Therapeutic approaches targeting ferroptosis in cardiomyopathy[J]. Cardiovasc Drugs Ther, 2025, 36(3):595-613. [42] TANG Z, HUANG X, MEI H, et al. Silencing of METTL3 suppressed ferroptosis of myocardial cells by m6A modification of SLC7A11 in a YTHDF2 manner[J]. J Bioenerg Biomembr, 2024, 56(2): 149-157. [43] GU J J, DU T J, ZHANG L N, et al. Identification of ferroptosis-related genes in heart failure induced by transverse aortic constriction[J]. J Inflamm Res, 2023, 16: 4899-4912. [44] WANG M, MO D, ZHANG N, et al. Ferroptosis in diabetic cardiomyopathy: advances in cardiac fibroblast-cardiomyocyte interactions[J]. Heliyon, 2024, 10(15): e35219. [45] SONG Z, WANG J, ZHANG L. Ferroptosis: a new mechanism in diabetic cardiomyopathy[J]. Int J Med Sci, 2024, 21(4): 612-622. [46] ZHUANG S, MA Y, ZENG Y, et al. METTL14 promotes doxorubicin-induced cardiomyocyte ferroptosis by regulating the KCNQ1OT1-miR-7-5p-TFRC axis[J]. Cell Biol Toxicol, 2023, 39(3): 1015-1035. |
[1] | GAO Ying, LIANG Wei. Advances in the study of sarcopenic obesity and cardiovascular disease [J]. Practical Geriatrics, 2025, 39(7): 732-736. |
[2] | ZHU Xiangyu, HANG Lejia, WANG Yu, WU Yuyi, ZHAO Yijing, ZHU Bei, HUANG Jingjing. Advances in artificial intelligence for cardiovascular disease in the elderly [J]. Practical Geriatrics, 2025, 39(6): 621-625. |
[3] | ZHENG Hui, WANG Hui, YIN Donghua, YIN Hongli, SUN Chuqiao,CHENG Yang, WANG Ying. Analysis of the correlation between obesity-related indices and risk of cardiovascular disease in postmenopausal women [J]. Practical Geriatrics, 2025, 39(4): 372-376. |
[4] | FAN Yao, WANG Qiang, TANG Ji-hong, LOU Qing-lin, TANG Wei, GU Liu-bao. Analysis of genomic DNA methylation of peripheral blood in elderly patients with type 2 diabetes mellitus suffering form cardiovascular disease-induced death [J]. Practical Geriatrics, 2022, 36(5): 468-472. |
[5] | FAN Tian-shu, ZHAO Wen-xue, LU Miao, WANGXiang-ming, ZHA Zhi-min, CAO Ya-ru, GUO Yan. Correlation between sarcopenia and non-enzymatic glycosylation and cardiovascular disease in the community elderly [J]. Practical Geriatrics, 2021, 35(9): 910-913. |
[6] | ZHU Jian-Yi, LV Zhi-Gang, SHI Heng-Chuan. Relationship of serum total homocysteine and macrovascular diseases in elderly patients with type 2 diabetes mellitus [J]. Practical Geriatrics, 2010, 24(2): 135-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|