Practical Geriatrics ›› 2023, Vol. 37 ›› Issue (11): 1166-1169.doi: 10.3969/j.issn.1003-9198.2023.11.022
Previous Articles Next Articles
Received:
2022-12-13
Online:
2023-11-20
Published:
2023-11-22
CLC Number:
[1] CHRISTENSON S A, SMITH B M, BAFADHEL M, et al. Chronic obstructive pulmonary disease[J]. Lancet, 2022, 399(10342):2227-2242. [2] ZHANG D, LI S, WANG N, et al. The cross-talk between gut microbiota and lungs in common lung diseases[J]. Front Microbiol, 2020, 11:301. [3] SILVA Y P, BERNARDI A, FROZZA R L. The role of short-chain fatty acids from gut microbiota in gut-brain communication[J]. Front Endocrinol:Lausanne, 2020, 11:25. [4] ANANYA F N, AHAMMED M R, FAHEM M M, et al. Association of intestinal microbial dysbiosis with chronic obstructive pulmonary disease[J]. Cureus, 2021, 13(11):e19343. [5] BANDER Z A L, NITERT M D, MOUSA A, et al. The gut microbiota and inflammation: an overview[J]. Int J Environ Res Public Health, 2020, 17(20):7618. [6] WU Y, LUO Z, LIU C. Variations in fecal microbial profiles of acute exacerbations and stable chronic obstructive pulmonary disease[J]. Life Sci, 2021, 265:118738. [7] RAFTERY A L, TSANTIKOS E, HARRIS N L, et al. Links between inflammatory bowel disease and chronic obstructive pulmonary disease[J]. Front Immunol, 2020, 11:2144. [8] TROMPETTE A, GOLLWITZER E S, YADAVA K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J]. Nat Med, 2014, 20(2):159-166. [9] RAMOS-GARCIA V, TEN-DOMÉNECH I, MORENO-GIMÉNEZ A, et al. GC-MS analysis of short chain fatty acids and branched chain amino acids in urine and faeces samples from newborns and lactating mothers[J]. Clin Chim Acta, 2022, 532:172-180. [10] FENG W, AO H, PENG C. Gut microbiota, short-chain fatty acids, and herbal medicines[J]. Front Pharmacol, 2018, 9:1354. [11] MACIEJ ZIE,TEK, ZBIGNIEW CELEWICZ, MAłGORZATA SZCZUKO. Short-chain fatty acids, maternal microbiota and metabolism in pregnancy[J]. Nutrients, 2021, 13(4):1244. [12] SALVI P S, COWLES R A. Butyrate and the intestinal epithelium: modulation of proliferation and inflammation in homeostasis and disease[J]. Cells, 2021, 10(7):1775. [13] FERRER-PICÓN E, DOTTI I, CORRALIZA A M, et al. Intestinal inflammation modulates the epithelial response to butyrate in patients with inflammatory bowel disease[J]. Inflamm Bowel Dis, 2020, 26(1): 43-55. [14] RAUF A, KHALIL A A, RAHMAN U UR, et al. Recent advances in the therapeutic application of short-chain fatty acids (SCFAs): an updated review[J]. Crit Rev Food Sci Nutr, 2022, 62(22):6034-6054. [15] LI M, VAN ESCH B C A M, WAGENAAR G T M, et al. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells[J]. Eur J Pharmacol, 2018, 831:52-59. [16] STURM E M, KNUPLEZ E, MARSCHE G. Role of short chain fatty acids and apolipoproteins in the regulation of eosinophilia-associated diseases[J]. Int J Mol Sci, 2021, 22(9):4377. [17] LI N, DAI Z, WANG Z, et al. Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease[J]. Respir Res, 2021, 22(1):274. [18] KARAVAEVA T M, MAKSIMENYA M V, TERESHKOV P P, et al. Long-chain fatty acids and short-chain fatty acids in exhaled breath condensate of patients with chronic obstructive pulmonary disease[J]. Biomeditsinskaya Khimiya, 2021, 67(2):169-174. [19] DANG A T, MARSLAND B J. Microbes, metabolites, and the gut–lung axis[J]. Mucosal Immunol, 2019, 12(4):843-850. [20] RICHARDS L B, LI M, FOLKERTS G, et al. Butyrate and propionate restore the cytokine and house dust mite compromised barrier function of human bronchial airway epithelial cells[J]. Int J Mol Sci, 2021, 22(1):65. [21] HISATA S, RACANELLI A C, KERMANI P, et al. Reversal of emphysema by restoration of pulmonary endothelial cells[J]. J Exp Med, 2021, 218(8):e20200938. [22] YUAN X, WANG L, BHAT O M, et al. Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: antioxidant action of butyrate[J]. Redox Biol, 2018, 16:21-31. [23] KAROOR V, STRASSHEIM D, SULLIVAN T, et al. The short-chain fatty acid butyrate attenuates pulmonary vascular remodeling and inflammation in hypoxia-induced pulmonary hypertension[J]. Int J Mol Sci, 2021, 22(18): 9916. [24] ROBLES-VERA I, TORAL M, DE LA VISITACIÓN N, et al. Protective effects of short-chain fatty acids on endothelial dysfunction induced by angiotensin II[J]. Front Physiol, 2020, 11:277. [25] JANG Y O, KIM O H, KIM S J, et al. High-fiber diets attenuate emphysema development via modulation of gut microbiota and metabolism[J]. Sci Rep, 2021, 11(1):7008. [26] HAAK B W, LITTMANN E R, CHAUBARD J L, et al. Impact of gut colonization with butyrate-producing microbiota on respiratory viral infection following allo-HCT[J]. Blood, 2018, 131(26):2978-2986. [27] ANTUNES K H, FACHI J L, DE PAULA R, et al. Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response[J]. Nat Commun, 2019, 10(1):3273. [28] RUTTING S, XENAKI D, MALOUF M, et al. Short-chain fatty acids increase TNFα-induced inflammation in primary human lung mesenchymal cells through the activation of p38 mapk[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 316(1):L157-L174. [29] KIM E K, SINGH D, PARK J H, et al. Impact of body mass index change on the prognosis of chronic obstructive pulmonary disease[J]. Respiration, 2021, 99(11):943-953. [30] PUTCHA N, ANZUETO A R, CALVERLEY P M A, et al. Mortality and exacerbation risk by body mass index in patients with COPD in TIOSPIR and UPLIFT[J]. Ann Am Thorac Soc, 2022, 19(2):204-213. [31] SCHWIERTZ A, TARAS D, SCHÄFER K, et al. Microbiota and SCFA in lean and overweight healthy subjects[J]. Obesity, 2010, 18(1):190-195. [32] SHIN M K, KWAK S H, PARK Y, et al. Association between dietary patterns and chronic obstructive pulmonary disease in Korean adults: the Korean genome and epidemiology study[J]. Nutrients, 2021, 13(12): 4348. [33] BALDRICK F R, ELBORN J S, WOODSIDE J V, et al. Effect of fruit and vegetable intake on oxidative stress and inflammation in COPD: a randomised controlled trial[J]. Eur Respir J, 2012, 39(6):1377-1384. [34] KALUZA J, LARSSON S C, ORSINI N, et al. Fruit and vegetable consumption and risk of COPD: a prospective cohort study of men[J]. Thorax, 2017, 72(6):500-509. [35] KALUZA J, HARRIS H R, LINDEN A, et al. Long-term consumption of fruits and vegetables and risk of chronic obstructive pulmonary disease: a prospective cohort study of women[J]. Int J Epidemiol, 2018, 47(6):1897-1909. [36] SZMIDT M K, KALUZA J, HARRIS H R, et al. Long-term dietary fiber intake and risk of chronic obstructive pulmonary disease: a prospective cohort study of women[J]. Eur J Nutr, 2020, 59(5):1869-1879. [37] MARKOWIAK-KOPEĆ P, ĆLIZ·EWSKA K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome[J]. Nutrients, 2020, 12(4):1107. [38] DU T, LEI A, ZHANG N, et al. The beneficial role of probiotic lactobacillus in respiratory diseases[J]. Front Immunol, 2022, 13:908010. [39] ZHAO Z, NING J, BAO X Q I, et al. Fecal microbiota transplantation protects rotenone-induced Parkinson's disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis[J]. Microbiome, 2021, 9(1):226. [40] EL-SALHY M, HATLEBAKK J G, GILJA O H, et al. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study[J]. Gut, 2020, 69(5):859-867. [41] JANG Y O, LEE S H, CHOI J J, et al. Fecal microbial transplantation and a high fiber diet attenuates emphysema development by suppressing inflammation and apoptosis[J]. Exp Mol Med, 2020, 52(7):1128-1139. [42] ASHIQUE S, DE RUBIS G, SIROHI E, et al. Short chain fatty acids: fundamental mediators of the gut-lung axis and their involvement in pulmonary diseases[J]. Chem Biol Interact, 2022, 368:110231. [43] ZHANG F, WAN Y, ZUO T, et al. Prolonged impairment of short-chain fatty acid and L-isoleucine biosynthesis in gut microbiome in patients with COVID-19[J]. Gastroenterology, 2022, 162(2):548-561. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|