Practical Geriatrics ›› 2024, Vol. 38 ›› Issue (12): 1284-1287.doi: 10.3969/j.issn.1003-9198.2024.12.021
Previous Articles Next Articles
Received:2024-01-11
Online:2024-12-20
Published:2024-12-19
CLC Number:
| [1] FEIGIN V L, BRAININ M, NORRVING B, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022[J]. Int J Stroke, 2022, 17(1): 18-29. [2] FAN L S, CHEN Y C, LIAO R J, et al. Antagonism of histamine H3 receptor promotes angiogenesis following focal cerebral ischemia[J]. Acta Pharmacol Sin, 2022, 43(11): 2807-2816. [3] POWERS W J, RABINSTEIN A A, ACKERSON T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2019, 50(12):344-418. [4] MITAKI S, WADA Y, SHEIKH A M, et al. Proteomic analysis of extracellular vesicles enriched serum associated with future ischemic stroke[J]. Sci Rep, 2021, 11(1): 24024. [5] PARK K Y, AY I, AVERY R, et al. New biomarker for acute ischaemic stroke: plasma glycogen phosphorylase isoenzyme BB[J]. J Neurol Neurosurg Psychiatry, 2018, 89(4): 404-409. [6] KWEON O J, LIM Y K, LEE M K, et al. Clinical utility of serum holotranscobalamin measurements in patients with first-ever ischemic stroke[J]. Dis Markers, 2021, 2021:9914298. [7] TIEDT S, BRANDMAIER S, KOLLMEIER H, et al. Circulating metabolites differentiate acute ischemic stroke from stroke mimics[J]. Ann Neurol, 2020, 88(4): 736-746. [8] FAN H, YANG S, LI Y, et al. Assessment of homocysteine as a diagnostic and early prognostic biomarker for patients with acute lacunar infarction[J]. Eur Neurol, 2018, 79(1/2): 54-62. [9] EBIHARA K, YAMAGISHI K, UMESAWA M, et al. Moderate levels of N-terminal pro-B-type natriuretic peptide is associated with increased risks of total and ischemic strokes among Japanese: the circulatory risk in communities study[J]. J Atheroscler Thromb, 2020, 27(8): 751-760. [10] WEISS R, BUSHI D, MINDEL E, et al. Autoantibodies to annexin A2 and cerebral thrombosis: insights from a mouse model[J]. Lupus, 2021, 30(5): 775-784. [11] WANG J, ZHAO H, FAN Z, et al. Long noncoding RNA H19 promotes neuroinflammation in ischemic stroke by driving histone deacetylase 1-dependent M1 microglial polarization[J]. Stroke, 2017, 48(8): 2211-2221. [12] REZAEI M, MOKHTARI M J, BAYAT M, et al. Long non-coding RNA H19 expression and functional polymorphism rs217727 are linked to increased ischemic stroke risk[J]. BMC Neurol, 2021, 21(1): 54. [13] WANG J, RUAN J, ZHU M, et al. Predictive value of long noncoding RNA ZFAS1 in patients with ischemic stroke[J]. Clin Exp Hypertens, 2019, 41(7): 615-621. [14] SIMATS A, RAMIRO L, GARCÍA-BERROCOSO T, et al. A mouse brain-based multi-omics integrative approach reveals potential blood biomarkers for ischemic stroke[J]. Mol Cell Proteomics, 2020, 19(12): 1921-1936. [15] BUSTAMANTE A, LÓPEZ-CANCIO E, PICH S, et al. Blood biomarkers for the early diagnosis of stroke: the stroke-chip study[J].Stroke, 2017, 48(9):2419-2425. [16] LI L, DONG L, ZHAO J, et al. Circulating miRNA-3552 as a potential biomarker for ischemic stroke in rats[J]. Biomed Res Int, 2020, 2020:4501393. [17] HOLMEGAARD L, STANNE T M, ANDREASSON U, et al. Proinflammatory protein signatures in cryptogenic and large artery atherosclerosis stroke[J]. Acta Neurol Scand, 2021, 143(3): 303-312. [18] SINGLETON M J, YUAN Y, DAWOOD F Z, et al. Multiple blood biomarkers and stroke risk in atrial fibrillation: the REGARDS study[J]. J Am Heart Assoc, 2021, 10(15): e020157. [19] ZHANG M, WANG Y, WEI J, et al. BNP combined with echocardiographic parameters to predict the risk of cardioembolic stroke[J]. J Clin Neurosci, 2021, 88: 213-218. [20] HARPAZ D, BAJPAI R, NG G J L, et al. Blood biomarkers to detect new-onset atrial fibrillation and cardioembolism in ischemic stroke patients[J]. Heart Rhythm, 2021, 18(6): 855-861. [21] MODAK J M, ROY-O’REILLY M, ZHU L, et al. Differential microribonucleic acid expression in cardioembolic stroke[J]. J Stroke Cerebrovasc Dis, 2019, 28(1):121-124. [22] ZHU Z, TANG W, GE L, et al. The value of plasma fibrillin-1 level in patients with spontaneous cerebral artery dissection[J]. Neurology, 2018, 90(9):e732-e737. [23] ROZANSKI M, AUDEBERT H J. Glial fibrillary acidic protein in acute stroke: what we know and what we need to know[J]. AME Med J, 2018, 3: 14. [24] STAMOVA B, ANDER B P, JICKLING G, et al. The intracerebral hemorrhage blood transcriptome in humans differs from the ischemic stroke and vascular risk factor control blood transcriptomes[J]. J Cereb Blood Flow Metab, 2019, 39(9): 1818-1835. [25] THIEBAUT A M, GAUBERTI M, ALI C, et al. The role of plasminogen activators in stroke treatment: fibrinolysis and beyond[J]. Lancet Neurol, 2018, 17(12): 1121-1132. [26] BUSTAMANTE A, NING M, GARCÍA-BERROCOSO T, et al. Usefulness of ADAMTS13 to predict response to recanalization therapies in acute ischemic stroke[J]. Neurology, 2018, 90(12):e995-e1004. [27] ZANG N, LIN Z, HUANG K, et al. Biomarkers of unfavorable outcome in acute ischemic stroke patients with successful recanalization by endovascular thrombectomy[J]. Cerebrovasc Dis, 2020, 49(6): 583-592. [28] SHI K, ZOU M, JIA D M, et al. tPA mobilizes immune cells that exacerbate hemorrhagic transformation in stroke[J]. Circ Res, 2021, 128(1): 62-75. [29] KAZMIERSKI R, MICHALAK S, WENCEL-WAROT A, et al. Serum tight-junction proteins predict hemorrhagic transformation in ischemic stroke patients[J]. Neurology, 2012, 79(16): 1677-1685. [30] PENG Q, HOU J, WANG S, et al. Hypersensitive C-reactive protein-albumin ratio predicts symptomatic intracranial hemorrhage after endovascular therapy in acute ischemic stroke patients[J]. BMC Neurol, 2021, 21(1): 47. [31] JICKLING G C, ANDER B P, STAMOVA B, et al. RNA in blood is altered prior to hemorrhagic transformation in ischemic stroke[J]. Ann Neurol, 2013, 74(2): 232-240. [32] ZHANG Y, MA T, HU H, et al. Serum vascular endothelial growth factor as a biomarker for prognosis of minor ischemic stroke[J]. Clin Neurol Neurosurg, 2020, 196:106060. [33] HU Z, YANG X, HUANG R, et al. Association of circulating ICAM3 concentrations with severity and short-term outcomes of acute ischemic stroke[J]. Neurotox Res, 2021, 39(4): 1293-1299. [34] CUADRADO-GODIA E, OIS A, GARCIA-RAMALLO E, et al. Biomarkers to predict clinical progression in small vessel disease strokes: prognostic role of albuminuria and oxidized LDL cholesterol[J]. Atherosclerosis, 2011, 219(1): 368-372. [35] GONG P, LIU Y, HUANG T, et al. The association between high-sensitivity C-reactive protein at admission and progressive motor deficits in patients with penetrating artery infarctions[J]. BMC Neurol, 2019, 19(1): 346. [36] SUN J, LV X, GAO X, et al. The association between serum uric acid level and the risk of cognitive impairment after ischemic stroke[J]. Neurosci Lett, 2020, 734:135098. [37] WANG Q, WANG K, MA Y, et al. Serum galectin-3 as a potential predictive biomarker is associated with poststroke cognitive impairment[J]. Oxid Med Cell Longev, 2021, 2021:5827812. [38] YANG C D, CHENG M L, LIU W, et al. Association of serum retinoic acid with depression in patients with acute ischemic stroke[J]. Aging: Albany NY, 2020, 12(3): 2647-2658. [39] YU S, LUO Y, ZHANG T, et al. Eosinophil-to-monocyte ratio is a potential biomarker in the prediction of functional outcome among patients with acute ischemic stroke[J]. BMC Neurosci, 2021, 22(1): 8. [40] WALL A, ANGER O, JOOD K, et al. Circulating granulocyte colony-stimulating factor and functional outcome after ischemic stroke: an observational study[J]. Neurol Res, 2021, 43(12): 1013-1022. [41] SCHWEDHELM E, SCHWIEREN L, TIEDT S, et al. Serum sphingosine-1-phosphate levels are associated with severity and outcome in patients with cerebral ischemia[J]. Stroke, 2021, 52(12): 3901-3907. [42] XU Y, WANG K, WANG Q, et al. The antioxidant enzyme PON1: a potential prognostic predictor of acute ischemic stroke[J]. Oxid Med Cell Longev, 2021, 2021:6677111. [43] GUO D, ZHU Z, ZHONG C, et al. Prognostic metrics associated with inflammation and atherosclerosis signaling evaluate the burden of adverse clinical outcomes in ischemic stroke patients[J]. Clin Chem, 2020, 66(11): 1434-1443. [44] MA J, SHEN L, BAO L, et al. A novel prognosis prediction model, including cytotoxic T lymphocyte-associated antigen-4, ischemia-modified albumin, lipoprotein-associated phospholipase A2, glial fibrillary acidic protein, and homocysteine, for ischemic stroke in the Chinese hypertensive population[J]. J Clin Lab Anal, 2021, 35(5): 317-322. |
| [1] | YU Dong-qing, CHE-Lu. Effect and prognosis of dual anti-platelet therapy based on cilostazol in elderly patients with acute cerebral infarction combined with clopidogrel resistance [J]. Practical Geriatrics, 2023, 37(8): 843-847. |
| [2] | BAI Jian-bing, WANG Yang, LI Zi-biao, XIANG Wen-jie. Effect of Solumbra technology in the treatment of elderly patients with cerebral infarction and the change of nerve injury markers [J]. Practical Geriatrics, 2023, 37(6): 603-606. |
| [3] | CAI Ying-yuan, LU Xiao-wei. Relationship between acute insular infarction and stress hyperglycemia in the elderly [J]. Practical Geriatrics, 2021, 35(11): 1126-1130. |
| [4] | . [J]. Practical Geriatrics, 2021, 35(11): 1178-1181. |
| [5] | . [J]. Practical Geriatrics, 2021, 35(11): 1209-1211. |
| [6] | ZHANG Zhong-hua, HUANG Qing, LIU Chun-mei, SHI Bao-zhu. Correlation between fibrinogen to albumin ratio and poor prognosis 90 days after endovascular treatment in elderly patients with acute ischemic stroke [J]. Practical Geriatrics, 2021, 35(3): 241-245. |
| [7] | DING Gui-bing, WU Yan-feng, CHEN Liang, WU Jin, ZHANG Peng. Effects of edaravone on outcomes in the elderly patients with acute ischemic stroke treated with recombinant tissue plasminogen activator [J]. Practical Geriatrics, 2021, 35(3): 301-305. |
| [8] | CHEN Dong-li, SONG Li-yun, CHEN Jie, YANG Zhen, GUO Min. Effects of edaravone on penumbra volume and nervous function deficiency in elderly patients with ischemic stroke [J]. Practical Geriatrics, 2021, 35(6): 591-594. |
| [9] | . [J]. Practical Geriatrics, 2024, 38(1): 102-105. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|