[1] VON HAEHLING S, EBNER N, DOS SANTOS M R, et al. Muscle wasting and cachexia in heart failure: mechanisms and therapies [J]. Nat Rev Cardiol, 2017, 14(6):323-341. [2] CARBONE S, BILLINGSLEY H E, RODRIGUEZ-MIGUELEZ P, et al. Lean mass abnormalities in heart failure: the role of sarcopenia, sarcopenic obesity, and cachexia [J]. Curr Probl Cardiol, 2020, 45(11):1-46. [3] CURCIO F, TESTA G, LIGUORI I, et al. Sarcopenia and heart failure [J]. Nutrients, 2020, 12(1):1-15. [4] KOSHIKAWA M, HARADA M, NOYAMA S, et al. Association between inflammation and skeletal muscle proteolysis, skeletal mass and strength in elderly heart failure patients and their prognostic implications [J]. BMC Cardiovasc Disord, 2020, 20(1):228-236. [5] TICINESI A, NOUVENNE A, CERUNDOLO N, et al. Gut microbiota, muscle mass and function in aging: a focus on physical frailty and sarcopenia [J]. Nutrients, 2019, 11(7):1-21. [6] LAVINE K J, SIERRA O L. Skeletal muscle inflammation and atrophy in heart failure [J]. Heart Fail Rev, 2017, 22(2):179-189. [7] SHARMA B, DABUR R. Role of pro-inflammatory cytokines in regulation of skeletal muscle metabolism: a systematic review [J]. Curr Med Chem, 2020, 27(13):2161-2188. [8] VOLTARELLI V A, BECHARA L R, BACURAU A V, et al. Lack of beta2 -adrenoceptors aggravates heart failure-induced skeletal muscle myopathy in mice [J]. J Cell Mol Med, 2014, 18(6):1087-1097. [9] BROWN D A, PERRY J B, ALLEN M E, et al. Expert consensus document: mitochondrial function as a therapeutic target in heart failure [J]. Nat Rev Cardiol, 2017, 14(4):238-250. [10] TOMOYASU K, SHINTARO K, SHINGO T, et al. Angiotensin II can directly induce mitochondrial dysfunction, decrease oxidative fibre number and induce atrophy in mouse hindlimb skeletal muscle[J]. Exp Phy, 2015, 100(3):312-322. [11] DELAFONTAINE P, YOSHIDA T. The renin-angiotensin system and the biology of skeletal muscle:mechanisms of muscle muscle wasting in chronic disease states [J]. Trans Am Clin Climatol Assoc, 2016, 127:245-258. [12] MARZETTI E, CALVANI R, DUPREE J, et al. Late-life enalapril administration induces nitric oxide-dependent and independent metabolic adaptations in the rat skeletal muscle [J]. Age :Dordr, 2013, 35(4):1061-1075. [13] FUJITA I V, FUJINO H, SAKARNOTO H, et al. Time course of ubiquitin-proteasome and macroautophagy-lysosome pathways in skeletal muscle in rats with heart failure [J]. Biomed Res, 2015, 36(6):383-392. [14] SHIN M J, JEON Y K, KIM I J. Testosterone and sarcopenia [J]. World J Mens Health, 2018, 36(3):192-198. [15] BREITBART A, AUGER-MESSIER M, MOLKENTIN J D, et al. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting [J]. Am J Physiol Heart Circ Physiol, 2011, 300(6):H1973-H1982. [16] HEINEKE J, AUGER-MESSIER M, XU J, et al. Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure [J]. Circulation, 2010, 121(3):419-425. [17] ZUCHI C, TRITTO I, CARLUCCIO E, et al. Role of endothelial dysfunction in heart failure [J]. Heart Fail Rev, 2020, 25(1):21-30. [18] BREITENSTEIN S, ROESSIG L, SANDNER P, et al. Novel sGC stimulators and sGC activators for the treatment of heart failure [J]. Handb Exp Pharmacol, 2017, 243225-243247. [19] YIN J, LU X, QIAN Z, et al. New insights into the pathogenesis and treatment of sarcopenia in chronic heart failure [J]. Theranostics, 2019, 9(14):4019-4029. [20] BIRKAN I., BAHAT G, ERDOGˇAN T, et al. Anorexia is independently associated with decreased muscle [J]. J Nutr Health Aging, 2019, 23(2):202-206. [21] YASUHARA S, MAEKAWA M, BAMBA S, et al. Energy metabolism and nutritional status in hospitalized patients with chronic heart failure [J]. Ann Nutr Metab, 2020, 76(2):129-139. [22] LINDGREN M, BORJESSON M. The importance of physical activity and cardiorespiratory fitness for patients with heart failure [J]. Diabetes Res Clin Pract, 2021, 176:108833. [23] DRUMMOND M J, DICKINSON J M, FRY C S, et al. Bed rest impairs skeletal muscle amino acid transporter expression, mTORC1 signaling, and protein synthesis in response to essential amino acids in older adults [J]. Am J Physiol Endocrinol Metab, 2012, 302(9):E1113-E1122. [24] COKER R H, HAYS N P, WILLIAMS R H, et al. Bed rest worsens impairments in fat and glucose metabolism in older, overweight adults [J]. J Gerontol A Biol Sci Med Sci, 2014, 69(3):363-370. [25] GLASS D J. Signaling pathways perturbing muscle mass [J]. Curr Opin Clin Nutr Metab Care, 2010, 13(3):225-229. [26] ADAMS V, LINKE A, WINZER E. Skeletal muscle alterations in HFrEF vs. HFpEF [J]. Curr Heart Fail Rep, 2017, 14(6):489-497. [27] GUMUCIO J P, MENDIAS C L. Atrogin-1, MuRF-1, and sarcopenia [J]. Endocrine, 2013, 43(1):12-21. [28] NOZAKI Y, YAMAJI M, NISHIGUCHI S, et al. Sarcopenia predicts adverse outcomes in an elderly outpatient population with New York heart association class II-IV heart failure: a prospective cohort study [J]. Aging Med Healthcare, 2019, 10(2):53-61. [29] NICHOLS S, O'DOHERTY A F, TAYLOR C, et al. Low skeletal muscle mass is associated with low aerobic capacity and increased mortality risk in patients with coronary heart disease-a CARE CR study [J]. Clin Physiol Funct Imaging, 2019, 39(1):93-102. [30] ONOUE Y, IZUMIYA Y, HANATANI S, et al. A simple sarcopenia screening test predicts future adverse events in patients with heart failure [J]. Int J Cardiol, 2016, 215:301-306. [31] ZHANG Y, ZHANG J, NI W, et al. Sarcopenia in heart failure: a systematic review and meta-analysis [J]. ESC Heart Fail, 2021, 8(2):1007-1017. [32] PELA G, TAGLIAFERRI S, PERRINO F, et al. Determinants of cardiac structure in frail and sarcopenic elderly adults [J]. Exp Gerontol, 2021, 150:111351. [33] BYEON C H, KANG K Y, KANG S H, et al. Sarcopenia is associated with Framingham risk score in the Korean population: Korean National Health and Nutrition Examination Survey(KNHANES) 2010-2011 [J]. J Geriatr Cardiol, 2015, 12(4):366-372. [34] KENG B M, GAO F, TEO L L, et al. Associations between skeletal muscle and myocardium in aging: a syndrome of "Cardio-Sarcopenia"? [J]. J Am Geriatr Soc, 2019, 67(12):2568-2573. [35] NAKAMURA M, SADOSHIMA J. Mechanisms of physiological and pathological cardiac hypertrophy [J]. Nat Rev Cardiol, 2018, 15(7):387-407. [36] PANENI F, DIAZ CANESTRO C, LIBBY P, et al. The aging cardiovascular system: understanding it at the cellular and clinical levels [J]. J Am Coll Cardiol, 2017, 69(15):1952-1967. [37] FRANGOGIANNIS N G. Cardiac fibrosis [J]. Cardiovasc Res, 2021, 117(6):1450-1488. [38] MURDOLO G, ANGELI F, REBOLDI G, et al. Left ventricular hypertrophy and obesity: only a matter of fat? [J]. High Blood Press Cardiovasc Prev, 2015, 22(1):29-41. [39] WU M, FALASCA M, BLOUGH E R. Akt/protein kinase B in skeletal muscle physiology and pathology [J]. J Cell Physiol, 2011, 226(1):29-36. |