[1] 刘明波, 何新叶, 杨晓红, 等. 《中国心血管健康与疾病报告2023》要点解读[J]. 中国全科医学, 2025, 28(1):20-38. [2] 国家心血管病中心, 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2023概要[J]. 中国循环杂志, 2024, 39(7):625-660. [3] MORAN A, GU D, ZHAO D, et al. Future cardiovascular disease in China: Markov model and risk factor scenario projections from the coronary heart disease policy model-China[J]. Circ Cardiovasc Qual Outcomes, 2010, 3(3): 243-252. [4] SINGH M, KUMAR A, KHANNA N N, et al. Artificial intelligence for cardiovascular disease risk assessment in personalised framework: a scoping review[J]. EClinicalMedicine, 2024, 73: 102660. [5] ZHU H, CHENG C, YIN H, et al. Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study[J]. Lancet Digit Health, 2020, 2(7): e348-e357. [6] ATTIA Z I, NOSEWORTHY P A, LOPEZ-JIMENEZ F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction[J]. Lancet, 2019, 394(10201): 861-867. [7] RAGHUNATH A, NGUYEN D D, SCHRAM M, et al. Artificial intelligence-enabled mobile electrocardiograms for event prediction in paroxysmal atrial fibrillation[J]. Cardiovasc Digit Health J, 2023, 4(1): 21-28. [8] HARMON D M, MANGOLD K, SUAREZ A B, et al. Postdevelopment performance and validation of the artificial intelligence-enhanced electrocardiogram for detection of cardiac amyloidosis[J]. JACC Adv, 2023, 2(8): 100612. [9] STAMATE E, PIRAIANU A I, CIOBOTARU O R, et al. Revolutionizing cardiology through artificial intelligence-big data from proactive prevention to precise diagnostics and cutting-edge treatment: a comprehensive review of the past 5 years[J]. Diagnostics: Basel, 2024, 14(11): 1103. [10] WANG S, PATEL H, MILLER T, et al. AI based CMR assessment of biventricular function: clinical significance of intervendor variability and measurement errors[J]. JACC Cardiovasc Imaging, 2022, 15(3): 413-427. [11] ZHANG Q, BURRAGE M K, LUKASCHUK E, et al. Toward replacing late gadolinium enhancement with artificial intelligence virtual native enhancement for gadolinium-free cardiovascular magnetic resonance tissue characterization in hypertrophic cardiomyopathy[J]. Circulation, 2021, 144(8): 589-599. [12] NARANG A, BAE R, HONG H, et al. Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use[J]. JAMA Cardiol, 2021, 6(6): 624-632. [13] ZHANG J, GAJJALA S, AGRAWAL P, et al. Fully automated echocardiogram interpretation in clinical practice[J]. Circulation, 2018, 138(16): 1623-1635. [14] KOTANIDIS C P, ANTONIADES C. Selfies in cardiovascular medicine: welcome to a new era of medical diagnostics[J]. Eur Heart J, 2020, 41(46): 4412-4414. [15] LIN S, LI Z, FU B, et al. Feasibility of using deep learning to detect coronary artery disease based on facial photo[J]. Eur Heart J, 2020, 41(46): 4400-4411. [16] XING W, SHI Y, WU C, et al. Predicting blood pressure from face videos using face diagnosis theory and deep neural networks technique[J]. Comput Biol Med, 2023, 164: 107112. [17] ZHOU Y, CHIA M A, WAGNER S K, et al. A foundation model for generalizable disease detection from retinal images[J]. Nature, 2023, 622(7981): 156-163. [18] DU T, XIE L, LIU X, et al. TCT-235 intelligent recognition of coronary angiography by deep learning technology: a novel computer-aided diagnostic system[J]. J Am Coll Cardiol, 2018, 72(13 Supplement): B98. [19] FEARON W F, ACHENBACH S, ENGSTROM T, et al. Accuracy of fractional flow reserve derived from coronary angiography[J]. Circulation, 2019, 139(4): 477-484. [20] HASIMBEGOVIC E, PAPP L, GRAHOVAC M, et al. A sneak-peek into the physician’s brain: a retrospective machine learning-driven investigation of decision-making in TAVR versus SAVR for young high-risk patients with severe symptomatic aortic stenosis[J]. J Pers Med, 2021, 11(11): 1062. [21] KOTANIDIS C P, AKAWI N, THOMAS S, et al. A novel arterial redox-specific machine learning-derived radiomic signature of perivascular adipose tissue predicts cardiac mortality from routine CCTA[J]. Eur Heart J, 2020, 41(Supplement_2): ehaa946.1372. [22] KOO B K, YANG S, JUNG J W, et al. Artificial intelligence-enabled quantitative coronary plaque and hemodynamic analysis for predicting acute coronary syndrome[J]. JACC Cardiovasc Imaging, 2024, 17(9): 1062-1076. [23] VENKAT V, ABDELHALIM H, DEGROAT W, et al. Investigating genes associated with heart failure, atrial fibrillation, and other cardiovascular diseases, and predicting disease using machine learning techniques for translational research and precision medicine[J]. Genomics, 2023, 115(2): 110584. [24] MCBANE R D 2nd, MURPHREE D H, LIEDL D, et al. Artificial intelligence of arterial Doppler waveforms to predict major adverse outcomes among patients evaluated for peripheral artery disease[J]. J Am Heart Assoc, 2024, 13(3): e031880. [25] RAHEEM A, WAHEED S, KARIM M, et al. Prediction of major adverse cardiac events in the emergency department using an artificial neural network with a systematic grid search[J]. Int J Emerg Med, 2024, 17(1): 4. [26] KOLK M Z H, RUIPÉREZ-CAMPILLO S, WILDE A A M, et al. Prediction of sudden cardiac death using artificial intelligence: current status and future directions[J]. Heart Rhythm, 2024: S1547-5271(24)03293-4. [27] HERZOG L, ILAN BER R, HOROWITZ-KUGLER Z, et al. Causal deep neural network-based model for first-line hypertension management[J]. Mayo Clin Proc Digit Health, 2023, 1(4): 632-640. |