[1] 中华医学会心血管病学分会, 中国医师协会心血管内科医师分会, 中国医师协会心力衰竭专业委员会, 等. 中国心力衰竭诊断和治疗指南2024[J]. 中华心血管病杂志, 2024,52(03):235-275. [2] SAVARESE G, BECHER P M, LUND L H, et al. Global burden of heart failure: a comprehensive and updated review of epidemiology[J]. Cardiovasc Res, 2023,118(17):3272-3287. [3] 马丽媛, 王增武, 樊静, 等. 《中国心血管健康与疾病报告2022》要点解读[J]. 中国全科医学, 2023,26(32):3975-3994.[4] 葛均波, 霍勇, 杨杰孚, 等. 慢性心力衰竭“新四联”药物治疗临床决策路径专家共识[J]. 中国循环杂志, 2022,37(8):769-781. [5] HEIDENREICH P A, BOZKURT B, AGUILAR D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines[J]. J Am Coll Cardiol, 2022, 79(17): e263-e421. [6] ZINMAN B, WANNER C, LACHIN J M, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. N Engl J Med, 2015,373(22):2117-2128. [7] MCMURRAY J J V, SOLOMON S D, INZUCCHI S E, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction[J]. N Engl J Med, 2019,381(21):1995-2008. [8] SOLOMON S D, MCMURRAY J, CLAGGETT B, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction[J]. N Engl J Med, 2022,387(12):1089-1098. [9] COX Z L, COLLINS S P, HERNANDEZ G A, et al. Efficacy and safety of dapagliflozin in patients with acute heart failure[J]. J Am Coll Cardiol, 2024,83(14):1295-1306. [10] FLIEGEL L. Structural and functional changes in the Na+/H+ exchanger isoform 1, induced by Erk1/2 phosphorylation[J]. Int J Mol Sci, 2019,20(10):2378. [11] ORLOWSKI J, GRINSTEIN S. Na+/H+ exchangers[J]. Compr Physiol, 2011,1(4):2083-2100. [12] LI T, TUO B. Pathophysiology of hepatic Na+/H+ exchange (Review)[J]. Exp Ther Med, 2020,20(2):1220-1229. [13] LU M, JIA M, WANG Q, et al. The electrogenic sodium bicarbonate cotransporter and its roles in the myocardial ischemia-reperfusion induced cardiac diseases[J]. Life Sci, 2021,270:119153. [14] PARKER M D, MYERS E J, SCHELLING J R. Na+-H+ exchanger-1 (NHE1) regulation in kidney proximal tubule[J]. Cell Mol Life Sci, 2015,72(11):2061-2074. [15] LI X, KARKI P, LEI L, et al. Na+/H+ exchanger isoform 1 facilitates cardiomyocyte embryonic stem cell differentiation[J]. Am J Physiol Heart Circ Physiol, 2009,296(1):H159-H170. [16] FLIEGEL L. Regulation of the Na+/H+ exchanger in the healthy and diseased myocardium[J]. Expert Opin Ther Targets, 2009,13(1):55-68. [17] SHIMIZU I, MINAMINO T. Physiological and pathological cardiac hypertrophy[J]. J Mol Cell Cardiol, 2016,97:245-262. [18] SULEIMAN M, ABDULRAHMAN N, YALCIN H, et al. The role of CD44, hyaluronan and NHE1 in cardiac remodeling[J]. Life Sci, 2018,209:197-201. [19] MEDINA A J, PINILLA O A, PORTIANSKY E L, et al. Silencing of the Na+/H+ exchanger 1(NHE-1) prevents cardiac structural and functional remodeling induced by angiotensin Ⅱ[J]. Exp Mol Pathol, 2019,107:1-9. [20] KAWASE H, BANDO Y K, NISHIMURA K, et al. A dipeptidyl peptidase-4 inhibitor ameliorates hypertensive cardiac remodeling via angiotensin-II/sodium-proton pump exchanger-1 axis[J]. J Mol Cell Cardiol, 2016,98:37-47. [21] BOZKURT B, AHMAD T, ALEXANDER K M, et al. Heart failure epidemiology and outcomes statistics: a report of the Heart Failure Society of America[J]. J Card Fail,2023,29(10):1412-1451. [22] LAMBERT R, SRODULSKI S, PENG X, et al. Intracellular Na+ concentration ([Na+] i) is elevated in diabetic hearts due to enhanced Na+-glucose cotransport[J]. J Am Heart Assoc, 2015,4(9):e002183. [23] BAARTSCHEER A, SCHUMACHER C A, WUST R C I, et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits[J]. Diabetologia, 2017,60(3):568-573. [24] UTHMAN L, BAARTSCHEER A, BLEIJLEVENS B, et al. Class effects of sglt2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation[J]. Diabetologia, 2018,61(3):722-726. [25] CHUNG Y J, PARK K C, TOKAR S, et al. Off-target effects of sodium-glucose co-transporter 2 blockers: empagliflozin does not inhibit Na+/H+ exchanger-1 or lower [Na+] i in the heart[J]. Cardiovasc Res, 2021,117(14):2794-2806. [26] KIM I, CHO H J, LIM S, et al. Comparison of the effects of empagliflozin and sotagliflozin on a zebrafish model of diabetic heart failure with reduced ejection fraction[J]. Exp Mol Med, 2023,55(6):1174-1181. [27] XU Y, ZHANG C, JIANG K, et al. Structural repurposing of SGLT2 inhibitor empagliflozin for strengthening anti-heart failure activity with lower glycosuria[J]. Acta Pharm Sin B, 2023,13(4):1671-1685. [28] TRUM M, RIECHEL J, SCHOLLMEIER E, et al. Empagliflozin inhibits increased Na influx in atrial cardiomyocytes of patients with HFpEF[J]. Cardiovasc Res, 2024,120(9):999-1010.[29] MARTINEZ E C, PASSARIELLO C L, LI J, et al. RSK3: a regulator of pathological cardiac remodeling[J]. IUBMB Life, 2015,67(5):331-337. [30] MAEKAWA N, ABE J, SHISHIDO T, et al. Inhibiting p90 ribosomal S6 kinase prevents (Na+)-H+ exchanger-mediated cardiac ischemia-reperfusion injury[J]. Circulation, 2006,113(21):2516-2523. [31] CHEN S, OVERBERG K, GHOUSE Z, et al. Empagliflozin mitigates cardiac hypertrophy through cardiac RSK/NHE-1 inhibition[J]. Biomed Pharmacother, 2024,174:116477. [32] ZHOU H, WANG S, ZHU P, et al. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission[J]. Redox Biol, 2018,15:335-346. [33] NAKAO M, SHIMIZU I, KATSUUMI G, et al. Empagliflozin maintains capillarization and improves cardiac function in a murine model of left ventricular pressure overload[J]. Sci Rep, 2021,11(1):18384. [34] UTHMAN L, HOMAYR A, JUNI R P, et al. Empagliflozin and dapagliflozin reduce ROS generation and restore NO bioavailability in tumor necrosis factor α-stimulated human coronary arterial endothelial cells[J]. Cell Physiol Biochem, 2019,53(5):865-886. [35] GUO H, YU X, LIU Y, et al. Sglt2 inhibitor ameliorates endothelial dysfunction associated with the common ALDH2 alcohol flushing variant[J]. Sci Transl Med, 2023,15(680):eabp9952. [36] UTHMAN L, LI X, BAARTSCHEER A, et al. Empagliflozin reduces oxidative stress through inhibition of the novel inflammation/NHE/[Na+] c/ROS-pathway in human endothelial cells[J]. Biomed Pharmacother, 2022,146:112515. [37] CHUNG C C, LIN Y K, CHEN Y C, et al. Empagliflozin suppressed cardiac fibrogenesis through sodium-hydrogen exchanger inhibition and modulation of the calcium homeostasis[J]. Cardiovasc Diabetol, 2023,22(1):27. |