实用老年医学 ›› 2023, Vol. 37 ›› Issue (9): 873-877.doi: 10.3969/j.issn.1003-9198.2023.09.003
蒲杰, 胡益民
收稿日期:
2023-04-20
出版日期:
2023-09-20
发布日期:
2023-09-21
通讯作者:
胡益民,Email:guyueym@njmu.edu.cn
作者简介:
胡益民 副教授
Received:
2023-04-20
Online:
2023-09-20
Published:
2023-09-21
中图分类号:
蒲杰, 胡益民. 人工智能在麻醉与围术期应用的研究进展[J]. 实用老年医学, 2023, 37(9): 873-877.
[1] HOSNY A, PARMAR C, QUACKENBUSH J. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018,18(8):500-510. [2] MIRSADEGHI M, BEHNAM H, SHALBAF R, et al. Characterizing awake and anesthetized states using a dimensionality reduction method[J]. J Med Syst, 2016,40(1):13. [3] CONNOR C W. Artificial intelligence and machine learning in anesthesiology[J]. Anesthesiology,2019,131(6):1346-1359. [4] HASHIMOTO D A, WITKOWSKI E, GAO L, et al. Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations[J]. Anesthesiology, 2020,132(2):379-394. [5] 薛庆生,于布为.迎接麻醉学的人工智能时代[J].上海医学,2018,41(5):260-262. [6] BUSNATU Ş, NICULESCU A G, BOLOCAN A, et al. Clinical applications of artificial intelligence-an updated overview[J]. J Clin Med,2022,11(8):2265. [7] BAHL M. Artificial intelligence: a primer for breast imaging radiologists[J]. J Breast Imaging,2020,2(4):304-314. [8] BI Q, GOODMAN K E, KAMINSKY J, et al. What is machine learning? A primer for the epidemiologist[J]. Am J Epidemiol, 2019,188(12):2222-2239. [9] ASGARI S, ADAMS H, KASPROWICZ M, et al. Feasibility of hidden markov models for the description of time-varying physiologic state after severe traumatic brain injury[J]. Crit Care Med, 2019, 47(11):e880-e885. [10] PADMANABHAN R, MESKIN N, HADDAD W M. Optimal adaptive control of drug dosing using integral reinforcement learning[J]. Math Biosci, 2019, 309:131-142. [11] SHEN Y T, CHEN L, YUE W W, et al. Artificial intelligence in ultrasound[J]. Eur J Radiol, 2021,139:109717. [12] GOLDENBERG S L, NIR G, SALCUDEAN S E. A new era: artificial intelligence and machine learning in prostate cancer[J]. Nat Rev Urol, 2019, 16(7):391-403. [13] EGGER J, GSAXNER C, PEPE A, et al. Medical deep learning - a systematic meta-review[J]. Comput Methods Programs Biomed,2022,221:106874. [14] 万程,陈柏兵,沈建新,等.基于人工智能ResNeXt的高度近视诊断方法[J].实用老年医学,2022,36(3):280-283. [15] SHIN Y, YANG J, LEE Y H, et al. Artificial intelligence in musculoskeletal ultrasound imaging[J]. Ultrasonography, 2021,40(1):30-44. [16] SOFFER S, BEN-COHEN A, SHIMON O, et al. Convolutional neural networks for radiologic images: a radiologist's guide[J]. Radiology,2019,290(3):590-606. [17] NERI E, COPPOLA F, MIELE V, et al. Artificial intelligence: who is responsible for the diagnosis?[J]. Radiol Med, 2020,125(6):517-521. [18] SHEAR T D, DESHUR M, BENSON J, et al. The effect of an electronic dynamic cognitive aid versus a static cognitive aid on the management of a simulated crisis: a randomized controlled trial[J]. J Med Syst, 2018, 43(1):6. [19] LIU Q, CHEN Y F, FAN S Z, et al. EEG signals analysis using multiscale entropy for depth of anesthesia monitoring during surgery through artificial neural networks[J]. Comput Math Methods Med, 2015, 2015:232381. [20] SADRAWI M, FAN S Z, ABBOD M F, et al. Computational depth of anesthesia via multiple vital signs based on artificial neural networks[J].Biomed Res Int, 2015, 2015:536863. [21] HEVER G, COHEN L, O'CONNOR M F, et al. Machine learning applied to multi-sensor information to reduce false alarm rate in the ICU[J]. J Clin Monit Comput,2020,34(2):339-352. [22] LUNDBERG S M, NAIR B, VAVILALA M S, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery[J]. Nat Biomed Eng, 2018,2(10):749-760. [23] HATIB F, JIAN Z, BUDDI S, et al. Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis[J]. Anesthesiology, 2018,129(4):663-674. [24] DALESIO N M, DIAZ-RODRIGUEZ N, KOKA R, et al. Development of a multidisciplinary pediatric airway program: an institutional experience[J]. Hosp Pediatr, 2019, 9(6):468-475. [25] ALEXANDER J C, JOSHI G P. Anesthesiology, automation, and artificial intelligence[J]. Proc: Bayl Univ Med Cent, 2017,31(1):117-119. [26] FREUNDLICH R E, EHRENFELD J M. Anesthesia information management: clinical decision support[J]. Curr Opin Anaesthesiol,2017,30(6):705-709. [27] LEE H C, RYU H G, CHUNG E J, et al. Prediction of bispectral index during target-controlled infusion of propofol and remifentanil: a deep learning approach[J]. Anesthesiology, 2018,128(3):492-501. [28] HETHERINGTON J, LESSOWAY V, GUNKA V, et al. SLIDE: automatic spine level identification system using a deep convolutional neural network[J]. Int J Comput Assist Radiol Surg, 2017, 12(7):1189-1198. [29] CHEN X, OWEN C A, HUANG E C, et al. Artificial intelligence in echocardiography for Anesthesiologists[J]. J Cardiothorac Vasc Anesth, 2021,35(1):251-261. [30] OLESEN A E, GRØNLUND D, GRAM M, et al. Prediction of opioid dose in cancer pain patients using genetic profiling: not yet an option with support vector machine learning[J]. BMC Res Notes, 2018, 11(1):78. [31] TIGHE P J, LUCAS S D, EDWARDS D A, et al. Use of machine-learning classifiers to predict requests for preoperative acute pain service consultation[J]. Pain Med,2012,13(10):1347-1357. [32] GONZALEZ-CAVA J M, ARNAY R, PEREZ J A M, et al. A machine learning based system for analgesic drug delivery[C]. International joint Conference SOCO'17-CISIS'17-ICEUTE'17, 2017, 649: 461-470. [33] BEN-ISRAEL N, KLIGER M, ZUCKERMAN G, et al. Monitoring the nociception level: a multi-parameter approach[J]. J Clin Monit Comput, 2013, 27(6):659-668. [34] GRAM M, ERLENWEIN J, PETZKE F, et al. Prediction of postoperative opioid analgesia using clinical-experimental parameters and electroencephalography[J]. Eur J Pain,2017,21(2):264-277. [35] SCHUSTER M, PEZZELLA M, TAUBE C, et al. Delays in starting morning operating lists: an analysis of more than 20,000 cases in 22 German hospitals[J]. Dtsch Arztebl Int, 2013,110(14):237-243. [36] COMBES C, MESKENS N, RIVAT C, et al. Using a KDD process to forecast the duration of surgery[J]. Int J Prod Econ, 2008, 112: 279-293. [37] 李福军,由艳秋,李悦,等.人工智能专家系统在临床麻醉教学中的应用与评价[J].中国医院管理,2020,40(8):73-75. [38] 钱柳,刘进.人工智能在麻醉学科的前景与挑战[J].临床麻醉学杂志,2021,37(6):565-568. |
[1] | 陈昕露, 周艺铭, 韩雪, 顾小萍. 睡眠障碍与老年术后认知功能障碍的双向关联研究进展[J]. 实用老年医学, 2024, 38(5): 433-437. |
[2] | 蔡文岚, 孙杰. 老年病人术后认知功能障碍的风险因素研究进展[J]. 实用老年医学, 2024, 38(5): 438-437. |
[3] | 杨艺慧, 刘海瑞, 胡珊, 朱江. 麻醉策略对老年病人围术期神经认知障碍影响的研究进展[J]. 实用老年医学, 2024, 38(5): 442-437. |
[4] | 赵倩文, 孙斌, 朱杨子, 顾小萍, 王立伟. 老年病人术后认知功能障碍诊断与干预策略的研究进展[J]. 实用老年医学, 2024, 38(5): 447-437. |
[5] | 刘向荣, 宋少波, 柳胜安, 李慧, 陈国胜. 利多卡因气雾剂在老年病人无痛胃镜诊疗中的应用[J]. 实用老年医学, 2024, 38(3): 265-269. |
[6] | 古丽波斯坦·阿布都肉苏力, 陈大鹏, 查天明, 桂波, 丁夏皓. 胸椎旁神经阻滞对胸腔镜下肺部分切除术老年病人术后肺部并发症的影响[J]. 实用老年医学, 2023, 37(11): 1103-1106. |
[7] | 雷黎明, 钱青青, 王朝辉, 冯善武, 马𤫟. 阿芬太尼在老年女性病人全麻手术中的应用[J]. 实用老年医学, 2023, 37(11): 1147-1148. |
[8] | 马雪萍, 徐桂萍, 付鹃, 李育耕. 不同镇静深度对高龄髋部骨折病人术后谵妄的影响[J]. 实用老年医学, 2023, 37(9): 893-897. |
[9] | 张继刚, 曹小飞, 王磊. 无肌松药经鼻气管插管全身麻醉在老年病人经内镜逆行性胰胆管造影术中的应用[J]. 实用老年医学, 2023, 37(9): 934-937. |
[10] | 常梦月, 彭良玉, 顾小萍. 上午和下午手术对择期行机器人辅助腹腔镜下前列腺癌根治术的老年病人围术期并发症的影响[J]. 实用老年医学, 2023, 37(9): 943-946. |
[11] | 冯海妹, 韦雪梅, 徐志新. 血糖控制程度与老年糖尿病手术病人顺式阿曲库铵肌松效果的相关性[J]. 实用老年医学, 2023, 37(8): 848-852. |
[12] | 周理, 齐晓轩, 韩艳芳, 王伟扬, 刘再英, 王琨. 术前饮用碳水化合物饮料对老年胸科手术病人麻醉诱导前胃容量及围术期低血压的影响[J]. 实用老年医学, 2023, 37(7): 671-675. |
[13] | 严志勇, 汪涛, 吴浩, 许旭, 樊倩楠. BMI对行胸腔镜下肺癌根治术老年病人术后舒芬太尼个体化镇痛效果的影响[J]. 实用老年医学, 2023, 37(7): 676-679. |
[14] | 袁蓉, 沈金超, 钱敏. 超声引导下竖脊肌阻滞联合瑞芬太尼在老年病人经皮椎体成形术中的应用[J]. 实用老年医学, 2023, 37(5): 475-478. |
[15] | 郑伟, 李娜, 庞昆, 胡正权, 刘杰. 酒石酸布托啡诺联合右美托咪定超前镇痛对老年膀胱癌根治术病人苏醒期躁动及术后短期内认知功能的影响[J]. 实用老年医学, 2023, 37(3): 238-242. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|