[1] CHANG C H, LIN C H, LANE H Y. Machine learning and novel biomarkers for the diagnosis of Alzheimer's disease[J].Int J Mol Sci, 2021, 22(5):2761. [2] JAMES C, RANSON J M, EVERSON R, et al. Performance of machine learning algorithms for predicting progression to dementia in memory clinic patients[J]. JAMA Netw Open, 2021,4(12):e2136553. [3] KLEIMAN M J, BARENHOLTZ E, GALVIN J E, et al. Alzheimer's disease neuroimaging initiative. Screening for early-stage alzheimer's disease using optimized feature sets and machine learning[J]. J Alzheimers Dis, 2021,81(1):355-366. [4] WANG X, JIAO B, LIU H, et al. Machine learning based on optical coherence tomography images as a diagnostic tool for Alzheimer's disease[J]. CNS Neurosci Ther,2022,28(12):2206-2217. [5] GALVIN J E, KLEIMAN M J, WALKER M. Using optical coherence tomography to screen for cognitive impairment and dementia[J]. J Alzheimers Dis, 2021,84(2):723-736. [6] COSTANZO E, LENGYEL I, PARRAVANO M, et al. Ocular biomarkers for Alzheimer disease dementia: an umbrella review of systematic reviews and meta-analyses[J]. JAMA Ophthalmol, 2023,141(1):84-91. [7] CHEUNG C Y, RAN A R, WANG S, et al. A deep learning model for detection of Alzheimer's disease based on retinal photographs: a retrospective, multicentre case-control study[J]. Lancet Digit Health, 2022, 4(11):e806-e815. [8] HUA R, XIONG J, LI G, et al. Development and validation of a deep learning algorithm based on fundus photographs for estimating the CAIDE dementia risk score[J]. Age Ageing, 2022, 51(12):afac282. [9] CRAWFORD T J, HIGHAM S, RENVOIZE T, et al. Inhibitory control of saccadic eye movements and cognitive impairment in Alzheimer's disease[J]. Biol Psychiatry,2005,57(9):1052-1060. [10] WILCOCKSON T D W, MARDANBEGI D, XIA B, et al. Abnormalities of saccadic eye movements in dementia due to Alzheimer's disease and mild cognitive impairment[J]. Aging:Albany NY,2019,11(15):5389-5398. [11] RIZZO A, ERMINI S, ZANCA D,et al. A machine learning approach for detecting cognitive interference based on eye-tracking data[J]. Front Hum Neurosci, 2022, 16:806330. [12] AHMED S, HAIGH A M, DE JAGER C A, et al. Connected speech as a marker of disease progression in autopsy-proven Alzheimer's disease[J]. Brain,2013,136(Pt 12):3727-3737. [13] WANG T, HONG Y, WANG Q, et al. Identification of mild cognitive impairment among chinese based on multiple spoken tasks[J]. J Alzheimers Dis, 2021, 82(1):185-204. [14] EYIGOZ E, MATHUR S, SANTAMARIA M,et al. Linguistic markers predict onset of Alzheimer's disease[J]. EClinicalMedicine, 2020, 28:100583. [15] AGBAVOR F, LIANG H. Predicting dementia from spontaneous speech using large language models[J]. PLOS Digit Health, 2022,1(12):e0000168. [16] BATEMAN R J, XIONG C, BENZINGER T L, et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease[J]. N Engl J Med,2012,367(9):795-804. [17] EZZATI A, ABDULKADIR A, JACK C R Jr,et al. Predictive value of ATN biomarker profiles in estimating disease progression in Alzheimer's disease dementia[J]. Alzheimers Dement, 2021, 17(11):1855-1867. [18] SANZ-BLASCO R, RUIZ-SÁNCHEZ DE LEÓN J M, ÁVILA-VILLANUEVA M, et al. Transition from mild cognitive impairment to normal cognition: determining the predictors of reversion with multi-state Markov models[J].Alzheimers Dement,2022,18(6):1177-1185. [19] HAMMOND T C, XING X, WANG C, et al. β-amyloid and tau drive early Alzheimer's disease decline while glucose hypometabolism drives late decline[J]. Commun Biol, 2020,3(1):352. [20] HARPER L, BARKHOF F, FOX N C,et al. Using visual rating to diagnose dementia: a critical evaluation of MRI atrophy scales[J]. J Neurol Neurosurg Psychiatry,2015,86(11):1225-1233. [21] KOIKKALAINEN J R, RHODIUS-MEESTER H F M, FREDERIKSEN K S, et al. Automatically computed rating scales from MRI for patients with cognitive disorders[J]. Eur Radiol, 2019, 29(9):4937-4947. [22] ODUSAMI M, MASKELIŪNAS R, DAMAEVIČIUS R, et al. Analysis of features of Alzheimer's disease: detection of early stage from functional brain changes in magnetic resonance images using a finetuned ResNet18 network[J]. Diagnostics:Basel, 2021, 11(6):1071.[23] PARK J H, CHO H E, KIM J H,et al. Machine learning prediction of incidence of Alzheimer's disease using large-scale administrative health data[J]. NPJ Digit Med, 2020, 3:46. [24] JONES D, LOWE V, GRAFF-RADFORD J, et al. A computational model of neurodegeneration in Alzheimer's disease[J]. Nat Commun, 2022, 13(1):1643. [25] BADER J M, GEYER P E, MÜLLER J B, et al. Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer's disease[J]. Mol Syst Biol, 2020, 16(6):e9356. [26] GIORGIO J, JAGUST W J, BAKER S, et al. A robust and interpretable machine learning approach using multimodal biological data to predict future pathological tau accumulation[J]. Nat Commun, 2022, 13(1):1887. [27] ZHANG B, GAITERI C, BODEA LG, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease[J]. Cell, 2013,153(3):707-720. [28] MICANOVIC C, PAL S. The diagnostic utility of EEG in early-onset dementia: a systematic review of the literature with narrative analysis[J]. J Neural Transm: Vienna, 2014,121(1):59-69. [29] IERACITANO C, MAMMONE N, HUSSAIN A, et al. A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia[J]. Neural Netw,2020,123:176-190. [30] RODRIGUEZ S, HUG C, TODOROV P, et al. Machine learning identifies candidates for drug repurposing in Alzheimer's disease[J]. Nat Commun,2021,12(1):1033. [31] XIE C, ZHUANG X X, NIU Z, et al. Amelioration of Alzheimer's disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow[J]. Nat Biomed Eng, 2022, 6(1):76-93. [32] 冷敏敏,张萍,胡明月,等.宠物机器人在老年痴呆患者照护中的应用进展[J].中华护理杂志,2018,53(12):1498-1503. [33] ENSHAEIFAR S, ZOHA A, SKILLMAN S, et al. Machine learning methods for detecting urinary tract infection and analysing daily living activities in people with dementia[J]. PLoS One,2019,14(1):e0209909. |