实用老年医学 ›› 2023, Vol. 37 ›› Issue (10): 1064-1068.doi: 10.3969/j.issn.1003-9198.2023.10.023
刘倩慧, 姚子俊, 何玉立, 吴军
收稿日期:
2022-12-11
出版日期:
2023-10-20
发布日期:
2023-10-19
通讯作者:
吴军,Email: wujun9989@njmu.edu.cn
Received:
2022-12-11
Online:
2023-10-20
Published:
2023-10-19
中图分类号:
刘倩慧, 姚子俊, 何玉立, 吴军. SGLT2i对老年糖尿病病人心血管保护机制的研究进展[J]. 实用老年医学, 2023, 37(10): 1064-1068.
[1] BERTOLUCI M C, ROCHA V Z. Cardiovascular risk assessment in patients with diabetes[J]. Diabetol Metab Syndr, 2017,9:25. [2] DAS S R, EVERETT B M, BIRTCHER K K, et al. 2020 expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes: a report of the American college of cardiology solution set oversight committee[J]. J Am Coll Cardiol, 2020,76(9):1117-1145. [3] DAVIES M J, D'ALESSIO D A, FRADKIN J, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)[J]. Diabetes Care, 2018, 41(12):2669-2701. [4] VALLON V, PLATT K A, CUNARD R, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule[J]. J Am Soc Nephrol, 2011, 22(1):104-112. [5] RIEG T, MASUDA T, GERASIMOVA M, et al. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia[J]. Am J Physiol Renal Physiol, 2014,306(2):F188-F193. [6] GORBOULEV V, SCHURMANN A, VALLON V, et al. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion[J]. Diabetes, 2012, 61(1):187-196. [7] WANG Z, SUN J, HAN R, et al. Efficacy and safety of sodium-glucose cotransporter-2 inhibitors versus dipeptidyl peptidase-4 inhibitors as monotherapy or add-on to metformin in patients with type 2 diabetes mellitus: a systematic review and meta-analysis[J]. Diabetes Obes Metab, 2018, 20(1):113-120. [8] YOKOTE K, TERAUCHI Y, NAKAMURA I, et al. Real-world evidence for the safety of ipragliflozin in elderly Japanese patients with type 2 diabetes mellitus (STELLA-ELDER): final results of a post-marketing surveillance study[J]. Expert Opin Pharmacother, 2016,17(15):1995-2003. [9] PACKER M, BUTLER J, ZANNAD F, et al. Effect of empagliflozin on worsening heart failure events in patients with heart failure and preserved ejection fraction: EMPEROR-Preserved Trial[J]. Circulation, 2021,144(16):1284-1294. [10] HEIDENREICH P A, BOZKURT B, AGUILAR D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines[J]. J Am Coll Cardiol, 2022, 79(17):1757-1780. [11] ZINMAN B, WANNER C, LACHIN J M, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. N Engl J Med, 2015, 373(22):2117-2128. [12] LAMBERS H H, DE ZEEUW D, WIE L, et al. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes[J]. Diabetes Obes Metab, 2013,15(9):853-862. [13] HALLOW K M, HELMLINGER G, GREASLEY P J, et al. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis[J]. Diabetes Obes Metab, 2018, 20(3):479-487. [14] FERRANNINI E, BALDI S, FRASCERRA S, et al. Renal handling of ketones in response to sodium-glucose cotransporter 2 inhibition in patients with type 2 diabetes[J]. Diabetes Care, 2017, 40(6):771-776. [15] KARIO K, BOHM M, MAHFOUD F, et al. Twenty-four-hour ambulatory blood pressure reduction patterns after renal denervation in the SPYRAL HTN-OFF MED Trial[J]. Circulation, 2018, 138(15):1602-1604. [16] PFEIFER M, TOWNSEND R R, DAVIES M J, et al. Effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on blood pressure and markers of arterial stiffness in patients with type 2 diabetes mellitus: a post hoc analysis[J]. Cardiovasc Diabetol, 2017, 16(1):29. [17] MAZIDI M, REZAIE P, GAO H K, et al. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients[J]. J Am Heart Assoc, 2017,6(6):e004007.. [18] LEE T M, CHANG N C, LIN S Z. Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts[J]. Free Radic Biol Med, 2017, 104:298-310. [19] KANG S, VERMA S, HASSANABAD A F, et al. Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts: novel translational clues to explain EMPA-REG OUTCOME results[J]. Can J Cardiol, 2020,36(4):543-553. [20] GRUBIC R P, CIGROVSKI B M, BULJ N, et al. Minireview: are SGLT2 inhibitors heart savers in diabetes?[J]. Heart Fail Rev, 2020, 25(6):899-905. [21] BUTTS B, GARY R A, DUNBAR S B, et al. The importance of NLRP3 inflammasome in heart failure[J]. J Card Fail, 2015, 21(7):586-593. [22] BYRNE N J, MATSUMURA N, MAAYAH Z H, et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) Inflammasome activation in heart failure[J]. Circ Heart Fail, 2020, 13(1):e006277. [23] YOUM Y H, NGUYEN K Y, GRANT R W, et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease[J]. Nat Med, 2015,21(3):263-269. [24] LAMBERS H H, DE ZEEUW D, WIE L, et al. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes[J]. Diabetes Obes Metab, 2013, 15(9):853-862. [25] ESTERLINE R L, VAAG A, OSCARSSON J, et al. Mechanisms in endocrinology: SGLT2 inhibitors: clinical benefits by restoration of normal diurnal metabolism?[J]. Eur J Endocrinol, 2018, 178(4):R113-R125. [26] VERMA S, GARG A, YAN A T, et al. Effect of empagliflozin on left ventricular mass and diastolic function in indivi-duals with diabetes: an important clue to the EMPA-REG OUTCOME Trial?[J]. Diabetes Care, 2016,39(12):e212-e213. [27] LEE H C, SHIOU Y L, JHOU S J, et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats[J]. Cardiovasc Diabetol, 2019, 18(1):45. [28] FERRANNINI E, MUSCELLI E, FRASCERRA S, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients[J]. J Clin Invest, 2014, 124(2):499-508. [29] AL J H, DANIELE G, ADAMS J, et al. Determinants of the increase in ketone concentration during SGLT2 inhibition in NGT, IFG and T2DM patients[J]. Diabetes Obes Metab, 2017,19(6):809-813. [30] FERRANNINI E, BALDI S, FRASCERRA S, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes[J]. Diabetes, 2016,65(5):1190-1195. [31] HO K L, ZHANG L, WAGG C, et al. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency[J]. Cardiovasc Res, 2019,115(11):1606-1616. [32] BEDI K J, SNYDER N W, BRANDIMARTO J, et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure[J]. Circulation, 2016, 133(8):706-716. [33] AUBERT G, MARTIN O J, HORTON J L, et al. The failing heart relies on ketone bodies as a fuel[J]. Circulation, 2016,133(8):698-705. [34] VERMA S, RAWAT S, HO K L, et al. Empagliflozin increases cardiac energy production in diabetes: novel translational insights into the heart failure benefits of SGLT2 inhibitors[J]. JACC Basic Transl Sci, 2018, 3(5):575-587. [35] SANTOS-GALLEGO C G, REQUENA-IBANEZ J A, SAN A R, et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics[J]. J Am Coll Cardiol, 2019,73(15):1931-1944. [36] SHAO Q, MENG L, LEE S, et al. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats[J]. Cardiovasc Diabetol, 2019,18(1):165. [37] NIELSEN R, MOLLER N, GORMSEN L C, et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients[J]. Circulation, 2019,139(18):2129-2141. |
[1] | 王苏, 赵一璟, 魏晨敏, 陈堃, 曹雯, 王昆, 杨昱. 老年T2DM病人甘油三酯葡萄糖指数与低密度脂蛋白亚型的关系研究[J]. 实用老年医学, 2024, 38(10): 1002-1006. |
[2] | 顾崇怀, 项学军, 郑元喜, 乔锐, 林松. 达格列净对接受冠状动脉介入治疗的伴有射血分数降低的心力衰竭合并2型糖尿病老年病人疗效观察[J]. 实用老年医学, 2024, 38(10): 1025-1029. |
[3] | 周潇, 顾荣, 孔小岑, 罗勇, 王蔚萍, 马建华, 李惠琴. 桑枝总生物碱和卡格列净治疗血糖控制不佳的老年2型糖尿病病人的疗效观察[J]. 实用老年医学, 2024, 38(10): 1066-1069. |
[4] | 刘倩慧, 姚子俊, 何玉立, 徐云凡, 吴军. 老年2型糖尿病合并慢性心力衰竭病人HbA1c水平对心脏结构和功能的影响[J]. 实用老年医学, 2024, 38(5): 491-437. |
[5] | 刘童君, 赵雅洁, 胡洁玲, 胡洋, 梁伟. 糖代谢异常对血清激活素A水平的影响[J]. 实用老年医学, 2024, 38(5): 495-437. |
[6] | 杨龙璇, 唐伟. 细胞衰老与2型糖尿病胰岛B细胞功能障碍的研究进展[J]. 实用老年医学, 2024, 38(5): 521-437. |
[7] | 王金涛, 胡坚. 老年人2型糖尿病与肌少症的关系研究进展[J]. 实用老年医学, 2024, 38(5): 529-437. |
[8] | 唐源, 邓暑芳, 何咏梅, 戴雨璇, 罗晶. 老年2型糖尿病病人健康素养水平及其与衰弱的相关性[J]. 实用老年医学, 2024, 38(3): 255-259. |
[9] | 代玲俐, 俞匀. 老年2型糖尿病病人估计肾小球滤过率与胰岛素抵抗及胰岛B细胞功能的相关性研究[J]. 实用老年医学, 2023, 37(12): 1219-1223. |
[10] | 范婷泳, 袁丽, 杨小玲, 陈茜. Caprini量表评估老年糖尿病病人静脉血栓栓塞症的效果[J]. 实用老年医学, 2023, 37(12): 1233-1237. |
[11] | 张贺成, 魏苏. 老年2型糖尿病病人血清铁蛋白水平与糖尿病足发生的相关性[J]. 实用老年医学, 2023, 37(11): 1111-1114. |
[12] | 胡艳, 巫海娣, 王雪菲, 娄青林, 叶青, 顾刘宝, 戴静, 宋小波. 老年2型糖尿病病人糖尿病足风险评分与尿微量白蛋白/肌酐的相关性分析[J]. 实用老年医学, 2023, 37(11): 1134-1137. |
[13] | 宗前兴, 莫永珍. 老年2型糖尿病健康状态分层框架的应用与研究进展[J]. 实用老年医学, 2023, 37(11): 1170-1175. |
[14] | 张林英, 梅群超, 张炜琦, 胡一兰. 抗阻训练联合高乳蛋白营养在老年2型糖尿病伴肌少症病人中的应用研究[J]. 实用老年医学, 2023, 37(10): 995-999. |
[15] | 唐伟, 张子成. 人工智能在糖尿病诊疗中的研究进展[J]. 实用老年医学, 2023, 37(9): 882-885. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|