实用老年医学 ›› 2023, Vol. 37 ›› Issue (4): 407-410.doi: 10.3969/j.issn.1003-9198.2023.04.021
史岚平, 方继伟, 刘俊松, 刘焕兵
收稿日期:
2022-05-27
出版日期:
2023-04-20
发布日期:
2023-03-31
通讯作者:
刘焕兵,Email:liuhuanbing6911@sina.com
Received:
2022-05-27
Online:
2023-04-20
Published:
2023-03-31
中图分类号:
史岚平, 方继伟, 刘俊松, 刘焕兵. 炎症性衰老与肌少症[J]. 实用老年医学, 2023, 37(4): 407-410.
[1] CHEN L K, WOO J, ASSANTACHAI P, et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment[J]. J Am Med Dir Assoc, 2020, 21(3): 300-307.e2. [2] WILSON D, JACKSON T, SAPEY E, et al.Frailty and sarcopenia: the potential role of an aged immune system[J]. Ageing Res Rev, 2017, 36:1-10. [3] FRANCESCHI C, CAMPISI J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases[J]. J Gerontol A Biol Sci Med Sci, 2014, 69(Suppl 1):S4-S9. [4] FOUGÈRE B, BOULANGER E, NOURHASHÉMI F, et al. Chronic inflammation: accelerator of biological aging[J]. J Gerontol A Biol Sci Med Sci, 2017, 72(9):1218-1225. [5] DE ALMEIDA A, DE ALMEIDA REZENDE M S, DANTAS S H, et al. Unveiling the role of inflammation and oxidative stress on age-related cardiovascular diseases[J]. Oxid Med Cell Longev, 2020.DOI: 10.1155/2020/1954398. [6] SCHIEBER M, CHANDEL N S. ROS function in redox signaling and oxidative stress[J]. Curr Biol, 2014, 24(10):R453-R462. [7] WIEDMER P, JUNG T, CASTRO J P, et al.Sarcopenia - molecular mechanisms and open questions[J]. Ageing Res Rev, 2021, 65:101200. [8] DRÖSE S, BRANDT U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain[J]. Adv Exp Med Biol, 2012, 748:145-169. [9] ZHANG Q, RAOOF M, CHEN Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury[J]. Nature, 2010, 464(7285):104-107. [10] LIU Q Y, ZHANG D Y, HU D Y, et al.The role of mitochondria in NLRP3 inflammasome activation[J]. Mol Immunol, 2018, 103:115-124. [11] RHEE S Y, KIM Y S. The role of advanced glycation end products in diabetic vascular complications[J]. Diabetes Metab J, 2018, 42(3):188-195. [12] RUNGRATANAWANICH W, QU Y, WANG X, et al.Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury[J]. Exp Mol Med, 2021, 53(2):168-188. [13] HUDSON B I, LIPPMAN M E. Targeting RAGE signaling in inflammatory disease[J]. Annu Rev Med, 2018, 69:349-364. [14] THOMAS R, WANG W, SU D M. Contributions of age-related thymic involution to immunosenescence and inflammaging[J]. Immun Ageing, 2020, 17:2. [15] LIAN J, YUE Y, YU W, et al. Immunosenescence: a key player in cancer development[J]. J Hematol Oncol, 2020, 13(1):151-168. [16] YOUM Y H, GRANT R W, MCCABE L R, et al. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging[J]. Cell Metab, 2013, 18(4):519-532. [17] SANTORO A, BIENTINESI E, MONTI D. Immunosenescence and inflammaging in the aging process: age-related diseases or longevity?[J]. Ageing Res Rev, 2021, 71:101422. [18] CLEGG A, HASSAN-SMITH Z. Frailty and the endocrine system[J]. Lancet Diabetes Endocrinol, 2018, 6(9):743-752. [19] CONRAD C D. Chronic stress-induced hippocampal vulnerability: the glucocorticoid vulnerability hypothesis[J]. Rev Neurosci, 2008, 19(6):395-411. [20] DIXIT M, DURAN-ORTIZ S, YILDIRIM G, et al. Induction of somatopause in adult mice compromises bone morphology and exacerbates bone loss during aging[J]. Aging Cell, 2021, 20(12):e13505. [21] STRAUB R H, KONECNA L, HRACH S, et al.Serum dehydroepiandrosterone (DHEA) and DHEA sulfate are negatively correlated with serum interleukin-6 (IL-6), and DHEA inhibits IL-6 secretion from mononuclear cells in man in vitro: possible link between endocrinosenescence and immunosenescence[J]. J Clin Endocrinol Metab, 1998, 83(6):2012-2017. [22] FRANCESCHI C, GARAGNANI P, PARINI P, et al.Inflammaging: a new immune-metabolic viewpoint for age-related diseases[J]. Nat Rev Endocrinol, 2018, 14(10):576-590. [23] TICINESI A, NOUVENNE A, CERUNDOLO N, et al. Gut microbiota, muscle mass and function in aging: a focus on physical frailty and sarcopenia[J]. Nutrients, 2019, 11(7):1633-1653. [24] BIAGI E, NYLUND L, CANDELA M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians[J]. PLoS One, 2010, 5(5):e10667. [25] THEVARANJAN N, PUCHTA A, SCHULZ C, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction[J]. Cell Host Microbe, 2017, 21(4):455-466. [26] BIRCH J, GIL J. Senescence and the SASP: many therapeutic avenues[J]. Genes Dev, 2020, 34(23/24):1565-1576. [27] SHARMA B, DABUR R. Role of pro-inflammatory cytokines in regulation of skeletal muscle metabolism: a systematic review[J]. Curr Med Chem, 2020, 27(13):2161-2188. [28] PEDERSEN B K, FEBBRAIO M A. Muscle as an endocrine organ: focus on muscle-derived interleukin-6[J]. Physiol Rev, 2008, 88(4):1379-1406. [29] STEENSBERG A, VAN HALL G, OSADA T, et al. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6[J]. J Physiol, 2000, 529(Pt 1):237-242. [30] WHITE J P, PUPPA M J, SATO S, et al. IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the ApcMin/+ mouse[J]. Skelet Muscle, 2012, 2:14. [31] FEBBRAIO M A, HISCOCK N, SACCHETTI M, et al. Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction[J]. Diabetes, 2004, 53(7):1643-1648. [32] MORGAN S A, SHERLOCK M, GATHERCOLE L L, et al. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle[J]. Diabetes, 2009, 58(11):2506-2515. [33] SCHAAP L A, PLUIJM S M, DEEG D J, et al. Inflammatory markers and loss of muscle mass (sarcopenia) and strength[J]. Am J Med, 2006, 119(6):526.e9-e17. [34] CESARI M, KRITCHEVSKY S B, NICKLAS B, et al. Oxidative damage, platelet activation, and inflammation to predict mobility disability and mortality in older persons: results from the health aging and body composition study[J]. J Gerontol A Biol Sci Med Sci, 2012, 67(6):671-676. [35] GROSICKI G J, BARRETT B B, ENGLUND D A, et al. Circulating interleukin-6 is associated with skeletal muscle strength, quality, and functional adaptation with exercise training in mobility-limited older adults[J]. J Frailty Aging, 2020, 9(1):57-63. [36] WANG Y, WELC S S, WEHLING-HENRICKS M, et al. Myeloid cell-derived tumor necrosis factor-alpha promotes sarcopenia and regulates muscle cell fusion with aging muscle fibers[J]. Aging Cell, 2018, 17(6):e12828-e12839. [37] LÉGER B, DERAVE W, DE BOCK K, et al. Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation[J]. Rejuvenation Res, 2008, 11(1): 163-175B. [38] BIAN A L, HU H Y, RONG Y D, et al. A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-α[J]. Eur J Med Res, 2017, 22(1):25-32. [39] GREIWE J S, CHENG B, RUBIN D C, et al.Resistance exercise decreases skeletal muscle tumor necrosis factor alpha in frail elderly humans[J]. FASEB J, 2001, 15(2):475-482. [40] NAGATA K, NISHIYAMA C. IL-10 in mast cell-mediated immune responses: anti-inflammatory and proinflammatory roles[J]. Int J Mol Sci, 2021, 22(9):4972-4987. [41] WALSTON J, FEDARKO N, YANG H, et al.The physical and biological characterization of a frail mouse model[J]. J Gerontol A Biol Sci Med Sci, 2008, 63(4):391-398. [42] ALVAREZ-RODRIGUEZ L, LOPEZ-HOYOS M, MUNOZ-CACHO P, et al. Aging is associated with circulating cytokine dysregulation[J]. Cell Immunol, 2012, 273(2):124-132. [43] RONG Y D, BIAN A L, HU H Y, et al. Study on relationship between elderly sarcopenia and inflammatory cytokine IL-6, anti-inflammatory cytokine IL-10[J]. BMC Geriatr, 2018, 18(1):308-313. |
[1] | 袁勇贵, 汪天宇. 前言——关注老年慢性病病人心身健康问题刻不容缓[J]. 实用老年医学, 2024, 38(10): 973-973. |
[2] | 许芳, 宋博文, 李璐瑶. 基于中医心身整体观的老年慢性病与心理健康关系研究[J]. 实用老年医学, 2024, 38(10): 990-992. |
[3] | 寇夕, 刘永宏, 董玮, 王华, 王宝梅, 高玉芳. 住院老年病人衰弱综合征与胰岛素样生长因子-1的相关性研究[J]. 实用老年医学, 2024, 38(5): 474-437. |
[4] | 庄鑫, 宗智颖, 徐花, 郑娟, 吴金芳, 刘恺航, 赵静, 张丽霞. 前馈控制训练对老年人跌倒风险的影响[J]. 实用老年医学, 2024, 38(5): 478-437. |
[5] | 杨琳琳, 张土明, 蔡钰莹, 罗金花, 杨宇. 社会支持与老年衰弱的研究进展[J]. 实用老年医学, 2024, 38(5): 525-437. |
[6] | 李婕, 王潇, 俞静, 刘娟, 陈姝, 佟蔷薇. 不同静息能量消耗预测方程在老年衰弱病人中的准确性比较[J]. 实用老年医学, 2024, 38(3): 293-295. |
[7] | 田甜, 张飞, 李铭麟, 张璇, 王佳贺. 人工智能助力改善老年听力障碍的研究进展[J]. 实用老年医学, 2024, 38(2): 114-118. |
[8] | 宗小燕, 王雪菲, 宗前兴, 刘欢, 莫永珍, 许家仁. 基于德尔菲法构建骨质疏松伴衰弱老年人居家运动方案[J]. 实用老年医学, 2023, 37(4): 416-421. |
[9] | 王佳贺. 前言——常见老年综合征与抑郁症的关系[J]. 实用老年医学, 2023, 37(3): 217-218. |
[10] | 穆白雪, 李铭麟, 张成普. 老年营养不良与抑郁症的研究进展[J]. 实用老年医学, 2023, 37(3): 219-222. |
[11] | 权紫微, 李铭麟, 苑莉莉, 王佳贺. 老年慢性疼痛与抑郁症的关系研究进展[J]. 实用老年医学, 2023, 37(3): 223-225. |
[12] | 张飞, 李铭麟, 王逸飞, 王佳贺. 老年人多重用药与抑郁症的关系研究进展[J]. 实用老年医学, 2023, 37(3): 226-229. |
[13] | 刘继业, 孟红. 肌少症与抑郁症关系的研究进展[J]. 实用老年医学, 2023, 37(3): 230-233. |
[14] | 邹函怡, 王艺桦, 高明, 李关东, 高理升, 马祖长. 社区老年人肌少症患病现状及影响因素分析[J]. 实用老年医学, 2023, 37(3): 246-250. |
[15] | 史晓兰, 欧阳晓俊, 沈玲玉, 沈晓星. 老年住院病人内在能力下降与衰弱的相关性分析[J]. 实用老年医学, 2023, 37(3): 256-260. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|