实用老年医学 ›› 2022, Vol. 36 ›› Issue (4): 413-416.doi: 10.3969/j.issn.1003-9198.2022.04.023
李晓庆, 黄菁菁, 季军, 高伟, 鲁翔
收稿日期:
2021-06-02
出版日期:
2022-04-20
发布日期:
2022-04-26
通讯作者:
鲁翔,Email:luxiang66@njmu.edu.cn
基金资助:
Received:
2021-06-02
Online:
2022-04-20
Published:
2022-04-26
中图分类号:
李晓庆, 黄菁菁, 季军, 高伟, 鲁翔. 选择性多聚腺苷酸化在心血管疾病中的研究进展[J]. 实用老年医学, 2022, 36(4): 413-416.
[1] TIAN B, MANLEY J L. Alternative polyadenylation of mRNA precursors[J].Nat Rev Mol Cell Biol, 2017, 18(1): 18-30. [2] TURNER R E, PATTISON A D, BEILHARZ T H.Alternative polyadenylation in the regulation and dysregulation of gene expression[J]. Semin Cell Dev Biol, 2018, 75: 61-69. [3] ZHANG H, LEE J Y, TIAN B. Biased alternative polyadenylation in human tissues[J] . Genome Biol, 2005, 6(12): R100. [4] ELKON R, UGALDE A P, AGAMI R. Alternative cleavage and polyadenylation: extent, regulation and function[J] . Nat Rev Genet, 2013, 14(7): 496-506. [5] DANTONEL J C, MURTHY K G, MANLEY J L, et al. Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA[J]. Nature, 1997, 389(6649): 399-402. [6] CLERICI M, FAINI M, AEBERSOLD R, et al. Structural insights into the assembly and polyA signal recognition mechanism of the human CPSF complex[J]. Elife, 2017, 6: e33111. [7] MACDONALD C C, WILUSZ J, SHENK T. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location[J]. Mol Cell Biol, 1994, 14(10): 6647-6654. [8] VENKATARAMAN K, BROWN K M, GILMARTIN G M. Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition[J]. Genes Dev, 2005, 19(11): 1315-1327. [9] BRUMBAUGH J B, STEFANO D, WANG X, et al. Nudt21 controls cell fate by connecting alternative polyadenylation to chromatin signaling[J]. Cell, 2018, 172(3): 629-631. [10] LI W, LI W, LAISHRAM R S, et al. Distinct regulation of alternative polyadenylation and gene expression by nuclear poly(A) polymerases[J]. Nucleic Acids Res, 2017, 45(15): 8930-8942. [11] DE KLERK E, VENEMA A, ANVAR S Y, et al. Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation[J]. Nucleic Acids Res, 2012, 40(18): 9089-9101. [12] LIN C L, EVANS V, SHEN S, et al.The nuclear experience of CPEB: implications for RNA processing and translational control[J] Rna, 2010, 16(2): 338-348. [13] MOORE-MORRIS T, VAN VLIET P P, ANDELFINGER G, et al. Role of epigenetics in cardiac development and congenital diseases[J]. Physiol Rev, 2018, 98(4): 2453-2475. [14] BLECH-HERMONI Y T, DASGUPTA R, CORAM J, et al. Identification of targets of CUG-BP, Elav-Like Family Member 1(CELF1) regulation in embryonic heart muscle[J]. PLoS One, 2016, 11(2): e0149061. [15] QIAN L, WYTHE J D, LIU J, et al. Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species[J]. J Cell Biol, 2011, 193(7): 1181-1196. [16] NIMURA K, YAMAMOTO M, TAKEICHI M, et al. Regulation of alternative polyadenylation by Nkx2-5 and Xrn2 during mouse heart development[J]. Elife, 2016, 5: e16030. [17] BRANNAN K, KIM H, ERICKSON B, et al. mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription[J]. Mol Cell, 2012, 46(3): 311-324. [18] NISHII K, MORIMOTO S, MINAKAMI R, et al. Targeted disruption of the cardiac troponin T gene causes sarcomere disassembly and defects in heartbeat within the early mouse embryo[J]. Dev Biol, 2008, 322(1): 65-73. [19] HE Y, HARA H, NÚÑEZ G. Mechanism and regulation of NLRP3 inflammasome activation[J]. Trends Biochem Sci, 2016, 41(12): 1012-1021. [20] KANG J G, AMAR M J, REMALEY A T, et al. Zinc finger protein tristetraprolin interacts with CCL3 mRNA and regulates tissue inflammation[J]. J Immunol, 2011, 187(5): 2696-2701. [21] HANEKLAUS M, O′NEIL J D, CLARK A R, et al. The RNA-binding protein tristetraprolin(TTP) is a critical negative regulator of the NLRP3 inflammasome[J]. J Biol Chem, 2017, 292(17): 6869-6881. [22] LV L, LI T, LI X, et al. The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214[J]. Mol Ther Nucleic Acids, 2018, 10: 387-397. [23] SOETANTO R, HYNES C J, PATEL H R, et al. Role of miRNAs and alternative mRNA 3′-end cleavage and polyadenylation of their mRNA targets in cardiomyocyte hypertrophy[J]. Biochim Biophys Acta, 2016, 1859(5): 744-756. [24] SHEEHY S P, HUANG S, PARKER K K.Time-warped comparison of gene expression in adaptive and maladaptive cardiac hypertrophy[J]. Circ Cardiovasc Genet, 2009, 2(2): 116-124. [25] KUMAR R R, NARASIMHAN M, SHANMUGAM G, et al. Abrogation of Nrf2 impairs antioxidant signaling and promotes atrial hypertrophy in response to high-intensity exercise stress[J]. J Transl Med, 2016, 14: 86. [26] KANDALA D T, MOHAN N, VIVEKANAND A, et al. CstF-64 and 3′-UTR cis-element determine Star-PAP specificity for target mRNA selection by excluding PAPα[J]. Nucleic Acids Res, 2016, 44(2): 811-823. [27] MOHAN N, KUMAR V, KANDALA D T, et al. A Splicing-independent function of RBM10 controls specific 3′ UTR processing to regulate cardiac hypertrophy[J]. Cell Rep, 2018, 24(13): 3539-3553. [28] CREEMERS E E, BAWAZEER A, UGALDE A P, et al. Genome-wide polyadenylation maps reveal dynamic mRNA 3′-end formation in the failing human heart[J].Circ Res, 2016, 118(3): 433-438. |
[1] | 李晓燕, 郁志明. 老年心房颤动合并焦虑状态的研究进展[J]. 实用老年医学, 2024, 38(10): 979-982. |
[2] | 顾崇怀, 项学军, 郑元喜, 乔锐, 林松. 达格列净对接受冠状动脉介入治疗的伴有射血分数降低的心力衰竭合并2型糖尿病老年病人疗效观察[J]. 实用老年医学, 2024, 38(10): 1025-1029. |
[3] | 刘瑾, 黄艳秋, 朱毅, 卓莉莉. 沙库巴曲缬沙坦钠对老年慢性心力衰竭病人的影响[J]. 实用老年医学, 2024, 38(10): 1030-1033. |
[4] | 徐寿勇, 袁勇. 老年病人开展双低剂量CT冠状动脉造影的可行性研究[J]. 实用老年医学, 2024, 38(10): 1054-1058. |
[5] | 刘琳, 邬青, 张静, 毛芳莹, 余璐, 任艺婷, 方婷. 老年心力衰竭病人症状感知现状及影响因素分析[J]. 实用老年医学, 2024, 38(5): 461-437. |
[6] | 王超, 陈晓君. 热带气候对东北地区老年原发性高血压病人血压、外周血microRNA-146a及Hcy的影响[J]. 实用老年医学, 2024, 38(5): 470-437. |
[7] | 刘倩慧, 姚子俊, 何玉立, 徐云凡, 吴军. 老年2型糖尿病合并慢性心力衰竭病人HbA1c水平对心脏结构和功能的影响[J]. 实用老年医学, 2024, 38(5): 491-437. |
[8] | 张丽莉, 李静, 丁林锋, 孙静娴, 蔡静波. 颈动脉粥样硬化斑块对非瓣膜性心房颤动病人缺血性脑卒中事件的预测价值[J]. 实用老年医学, 2024, 38(3): 236-239. |
[9] | 查志敏, 刘欢, 王向明, 李秋爽, 郭妍. 心脏瓣膜钙化对老年冠心病病人预后的影响[J]. 实用老年医学, 2024, 38(3): 245-250. |
[10] | 陈映泉, 钟勇. 心血管老化的机制、标志物和治疗[J]. 实用老年医学, 2024, 38(3): 299-303. |
[11] | 朱晨晨, 秦海东. 斑块侵蚀在急慢性冠脉综合征发生发展中的作用[J]. 实用老年医学, 2024, 38(3): 308-311. |
[12] | 程清, 徐艳, 陈国飞, 邓心悦. 血清血管紧张素Ⅱ和一氧化氮水平与老年慢性心力衰竭病人认知功能障碍的相关性[J]. 实用老年医学, 2024, 38(2): 132-135. |
[13] | 章颖, 谢玲, 叶佳琦, 羌文慧, 严晓云, 姜英, 张清. 层粘连蛋白与老年急性心肌梗死病人主要不良心血管事件的相关性[J]. 实用老年医学, 2024, 38(2): 149-151. |
[14] | 段力丹, 习玲, 许建萍. 射血分数正常的老年高血压病人TyG指数与左心室舒张功能的相关性分析[J]. 实用老年医学, 2024, 38(2): 152-156. |
[15] | 范婷泳, 袁丽, 杨小玲, 陈茜. Caprini量表评估老年糖尿病病人静脉血栓栓塞症的效果[J]. 实用老年医学, 2023, 37(12): 1233-1237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|