实用老年医学 ›› 2021, Vol. 35 ›› Issue (12): 1228-1231.doi: 10.3969/j.issn.1003-9198.2021.12.005
张宪, 刘晓颖
收稿日期:
2021-09-01
出版日期:
2021-12-20
发布日期:
2021-12-28
通讯作者:
刘晓颖,Email:liuxiaoying1981@yeah.net
作者简介:
刘晓颖 副主任医师
Received:
2021-09-01
Online:
2021-12-20
Published:
2021-12-28
中图分类号:
张宪, 刘晓颖. 巨噬细胞与糖尿病的研究进展[J]. 实用老年医学, 2021, 35(12): 1228-1231.
[1] DONATH M Y, SHOELSON S E. Type 2 diabetes as an inflammatory disease[J]. Nat Rev Immunol,2011,11(2):98-107. [2] EHSES J A, BÖNI-SCHNETZLER M, FAULENBACH M, et al. Macrophages, cytokines and beta-cell death in type 2 diabetes[J]. Biochem Soc Trans,2008,36(Pt 3):340-342. [3] SHAPOURI-MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440. [4] GINHOUX F, SCHULTZE J L, MURRAY P J, et al. New insights into the multidimensional concept of macrophage ontogeny, activation and function[J]. Nat Immunol, 2016, 17(1): 34-40. [5] 王东,徐兴欣,范哲,等. 高糖环境下肾小管上皮细胞来源外泌体诱导巨噬细胞激活的作用与机制[J]. 中华肾脏病杂志,2018,34(9):681-688. [6] ZENG H, QI X, XU X, et al. TAB1 regulates glycolysis and activation of macrophages in diabetic nephropathy[J]. Inflamm Res,2020,69(12):1215-1234. [7] CALLE P, HOTTER G. Macrophage phenotype and fibrosis in diabetic nephropathy[J]. Int J Mol Sci, 2020,21(8):2806. [8] HASEGAWA G, NAKANO K, SAWADA M, et al. Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy[J]. Kidney Int, 1991, 40(6):1007-1012. [9] KALANTARINIA K, AWAD A S, SIRAGY H M. Urinary and renal interstitial concentrations of TNF-alpha increase prior to the rise in albuminuria in diabetic rats[J]. Kidney Int, 2003, 64(4):1208-1213. [10] WANG X, YAO B, WANG Y, et al. Macrophage cyclooxygenase-2 protects against development of diabetic nephropathy[J]. Diabetes, 2017, 66(2): 494-504. [11] WANG Y, HARRIS D C. Macrophages in renal disease[J]. J Am Soc Nephrol, 2011, 22(1):21-27。 [12] OHKUMA T, KOMORITA Y, PETERS S A E, et al. Diabetes as a risk factor for heart failure in women and men: a systematic review and meta-analysis of 47 cohorts including 12 million individuals[J]. Diabetologia, 2019,62(9):1550-1560。 [13] ARONOW W S, AHN C. Incidence of heart failure in 2,737 older persons with and without diabetes mellitus[J]. Chest,1999,115(3):867-868. [14] BUGGER H, ABEL E D. Molecular mechanisms of diabetic cardiomyopathy[J]. Diabetologia, 2014, 57(4):660-671. [15] WATANABE R, HILHORST M, ZHANG H, et al. Glucose metabolism controls disease-specific signatures of macrophage effector functions[J]. JCI Insight, 2018, 3(20):e123047. [16] MISHRA P K, YING W, NANDI S S, et al. Diabetic cardiomyopathy: an immunometabolic Perspective[J]. Front Endocrinol: Lausanne, 2017, 8:72. [17] LASKIN D L. Macrophages and inflammatory mediators in chemical toxicity: a battle of forces[J]. Chem Res Toxicol, 2009, 22(8):1376-1385. [18] MASER R E, STEENKISTE A R, DORMAN J S, et al. Epidemiological correlates of diabetic neuropathy. Report from Pittsburgh Epidemiology of Diabetes Complications Study[J]. Diabetes, 1989, 38(11):1456-1461. [19] SUN J J, TANG L, ZHAO X P, et al. Infiltration of blood-derived macrophages contributes to the development of diabetic neuropathy[J]. J Immunol Res, 2019, 2019:7597382. [20] ROJEWSKA E, ZYCHOWSKA M, PIOTROWSKA A, et al. Involvement of macrophage inflammatory protein-1 family members in the development of diabetic neuropathy and their contribution to effectiveness of Morphine[J]. Front Immunol, 2018, 9:494. [21] GONG J, LI J B, DONG H, et al. Inhibitory effects of berberine on proinfammatory M1 macrophage polarization through interfering with the interaction between TLR4 and MyD88[J]. BMC Complement Altern Med,2019, 19(1):314. [22] SINDRILARU A, PETERS T, WIESCHALKA S, et al. An unrestrained proinfammatory M1 macrophage population induced by iron impairs wound healing in humans and mice[J]. J Clin Invest, 2011, 121(3):985-997. [23] BOULTON A J, VINIK A I, AREZZO J C, et al. Diabetic neuropathies: a statement by the American Diabetes Association[J]. Diabetes Care, 2005,28(4):956-962. [24] JACK M M, RYALS J M, WRIGHT D E. Protection from diabetes-induced peripheral sensory neuropathy--a role for elevated lyoxalase I? [J]. Exp Neurol, 2012, 234(1):62-69. [25] NOH S U, LEE W Y, KIM W S, et al. Expression of macrophage migration inhibitory factor in footpad skin lesions with diabetic neuropathy[J]. Mol Pain, 2018, 14:1744806918775482. [26] REN W, XI G, LI X, et al. Long non-coding RNA HCG18 promotes M1 macrophage polarization through regulating the miR-1 46a/TRAF6 axis, facilitating the progression of diabetic peripheral neuropathy[J]. Mol Cell Biochem, 2021, 476(1):471-482. [27] ESSER N, LEGRAND-POELS S, PIETTE J, et al. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes[J]. Diabetes Res Clin Pract, 2014, 105(2):141-150. [28] CHAWLA A, NGUYEN K D, GOH Y P. Macrophage-mediated inflammation in metabolic disease[J]. Nat Rev Immunol, 2011, 11(11):738-749. [29] JEONG J H, LEE Y R, PARK H G, et al. The effects of either resveratrol or exercise on macrophage infiltration and switching from M1 to M2 in high fat diet mice[J]. J Exerc Nutrition Biochem, 2015, 19(2):65-72. [30] MCARDLE M A, FINUCANE O M, CONNAUGHTON R M, et al. Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies[J]. Front Endocrinol: Lausanne, 2013, 4:52. [31] XU L, OTA T. Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: focus on fat browning and macrophage polarization[J]. Adipocyte, 2018,7(2):121-128. [32] ACÍN-PÉREZ R, IBORRA S, MARTÍ-MATEOS Y, et al. Fgr kinase is required for proinflammatory macrophage activation during diet-induced obesity[J]. Nat Metab, 2020, 2(9):974-988. |
[1] | 王苏, 赵一璟, 魏晨敏, 陈堃, 曹雯, 王昆, 杨昱. 老年T2DM病人甘油三酯葡萄糖指数与低密度脂蛋白亚型的关系研究[J]. 实用老年医学, 2024, 38(10): 1002-1006. |
[2] | 顾崇怀, 项学军, 郑元喜, 乔锐, 林松. 达格列净对接受冠状动脉介入治疗的伴有射血分数降低的心力衰竭合并2型糖尿病老年病人疗效观察[J]. 实用老年医学, 2024, 38(10): 1025-1029. |
[3] | 周潇, 顾荣, 孔小岑, 罗勇, 王蔚萍, 马建华, 李惠琴. 桑枝总生物碱和卡格列净治疗血糖控制不佳的老年2型糖尿病病人的疗效观察[J]. 实用老年医学, 2024, 38(10): 1066-1069. |
[4] | 刘倩慧, 姚子俊, 何玉立, 徐云凡, 吴军. 老年2型糖尿病合并慢性心力衰竭病人HbA1c水平对心脏结构和功能的影响[J]. 实用老年医学, 2024, 38(5): 491-437. |
[5] | 刘童君, 赵雅洁, 胡洁玲, 胡洋, 梁伟. 糖代谢异常对血清激活素A水平的影响[J]. 实用老年医学, 2024, 38(5): 495-437. |
[6] | 杨龙璇, 唐伟. 细胞衰老与2型糖尿病胰岛B细胞功能障碍的研究进展[J]. 实用老年医学, 2024, 38(5): 521-437. |
[7] | 王金涛, 胡坚. 老年人2型糖尿病与肌少症的关系研究进展[J]. 实用老年医学, 2024, 38(5): 529-437. |
[8] | 唐源, 邓暑芳, 何咏梅, 戴雨璇, 罗晶. 老年2型糖尿病病人健康素养水平及其与衰弱的相关性[J]. 实用老年医学, 2024, 38(3): 255-259. |
[9] | 代玲俐, 俞匀. 老年2型糖尿病病人估计肾小球滤过率与胰岛素抵抗及胰岛B细胞功能的相关性研究[J]. 实用老年医学, 2023, 37(12): 1219-1223. |
[10] | 范婷泳, 袁丽, 杨小玲, 陈茜. Caprini量表评估老年糖尿病病人静脉血栓栓塞症的效果[J]. 实用老年医学, 2023, 37(12): 1233-1237. |
[11] | 张贺成, 魏苏. 老年2型糖尿病病人血清铁蛋白水平与糖尿病足发生的相关性[J]. 实用老年医学, 2023, 37(11): 1111-1114. |
[12] | 胡艳, 巫海娣, 王雪菲, 娄青林, 叶青, 顾刘宝, 戴静, 宋小波. 老年2型糖尿病病人糖尿病足风险评分与尿微量白蛋白/肌酐的相关性分析[J]. 实用老年医学, 2023, 37(11): 1134-1137. |
[13] | 宗前兴, 莫永珍. 老年2型糖尿病健康状态分层框架的应用与研究进展[J]. 实用老年医学, 2023, 37(11): 1170-1175. |
[14] | 张林英, 梅群超, 张炜琦, 胡一兰. 抗阻训练联合高乳蛋白营养在老年2型糖尿病伴肌少症病人中的应用研究[J]. 实用老年医学, 2023, 37(10): 995-999. |
[15] | 刘倩慧, 姚子俊, 何玉立, 吴军. SGLT2i对老年糖尿病病人心血管保护机制的研究进展[J]. 实用老年医学, 2023, 37(10): 1064-1068. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|