实用老年医学 ›› 2021, Vol. 35 ›› Issue (6): 631-635.doi: 10.3969/j.issn.1003-9198.2021.06.025
王妍莉, 滕宗艳
收稿日期:
2020-06-17
发布日期:
2021-06-29
通讯作者:
滕宗艳,Email: tengzongyan@163.com
基金资助:
Received:
2020-06-17
Published:
2021-06-29
中图分类号:
王妍莉, 滕宗艳. 泛素特异性蛋白酶在心血管疾病中的研究进展[J]. 实用老年医学, 2021, 35(6): 631-635.
[1] PARIZADEH S M, JAFARZADEH ESFEHANI R, BAHREYNI A, et al. The diagnostic and prognostic value of red cell distribution width in cardiovascular disease; current status and prospective[J]. Biofactors, 2019, 45(4):507-516. [2] YOUNG M J, HSU K C, LIN T E, et al. The role of ubiquitin-specific peptidases in cancer progression[J]. J Biomed Sci, 2019, 26(1):42. [3] SONG L, LUO Z Q. Post-translational regulation of ubiquitin signaling[J]. J Cell Biol, 2019, 218(6):1776-1786. [4] LIU J, SHAIK S, DAI X P, et al. Targeting the ubiquitin pathway for cancer treatment[J].Biochim Biophys Acta, 2015, 1855(1):50-60. [5] YUAN T, YAN F J, YING M D, et al. Inhibition of ubiquitin-specific proteases as a novel anticancer therapeutic strategy[J]. Front Pharmacol, 2018, 9:1080. [6] WANG A T, ZHU F M, LIANG R, et al. Regulation of T cell differentiation and function by ubiquitin-specific proteases[J]. Cell Immunol, 2019, 340:103922. [7] QU Y S, LAZZERINI P E, CAPECCHI P L, et al. Autoimmune calcium channelopathies and cardiac electrical abnormalities[J]. Front Cardiovasc Med, 2019, 6:54. [8] FAKITSAS P, ADAM G, DAIDIÉ D, et al. Early aldosterone-induced gene product regulates the epithelial sodium channel by deubiquitylation[J]. J Am Soc Nephrol, 2007, 18(4):1084-1092. [9] ZHOU R F, TOMKOVICZ V R, BUTLER P L, et al. Ubiquitin-specific peptidase 8 (USP8) regulates endosomal trafficking of the epithelial Na+ channel[J]. J Biol Chem, 2013, 288(8):5389-5397. [10]KRZYSTANEK K, RASMUSSEN H B, GRUNNET M, et al. Deubiquitylating enzyme USP2 counteracts Nedd4-2–mediated downregulation of KCNQ1 potassium channels[J]. Heart Rhythm, 2012, 9(3):440-448. [11]POULY D, CHENAUX S, MARTIN V, et al. USP2-45 is a circadian clock output effector regulating calcium absorption at the post-translational level[J]. PLoS One, 2016, 11(1):e145155. [12]ROUGIER J S, ALBESA M, SYAM N, et al. Ubiquitin-specific protease USP2-45 acts as a molecular switch to promote α2δ-1-induced downregulation of Cav1.2 channels[J]. Pflugers Arch, 2015, 467(9):1919-1929. [13]NELSON J K, SORRENTINO V, AVAGLIANO TREZZA R, et al. The deubiquitylase USP2 regulates the LDLR pathway by counteracting the E3-ubiquitin ligase IDOL[J]. Circ Res, 2016, 118(3):410-419. [14]YANG H, SEO S G, SHIN S H, et al. 3,3’-Diindolylmethane suppresses high-fat diet-induced obesity through inhibiting adipogenesis of pre-adipocytes by targeting USP2 activity[J]. Mol Nutr Food Res, 2017, 61(10).DOI: 10.1002/MNFR.201700119. [15]HUANG X H, ORDEMANN J, MULLER J M, et al. The COP9 signalosome, cullin 3 and Keap1 supercomplex regulates CHOP stability and adipogenesis[J]. Biology Open, 2012, 1(8):705-710. [16]AKOUMIANAKIS I, SANNA F, MARGARITIS M, et al. Adipose tissue-derived WNT5A regulates vascular redox signaling in obesity via USP17/RAC1-mediated activation of NADPH oxidases[J]. Sci Transl Med, 2019, 11(510):v5055. [17]SAITO N, KIMURA S, MIYAMOTO T, et al. Macrophage ubiquitin-specific protease 2 modifies insulin sensitivity in obese mice[J]. Biochem Biophys Rep, 2017, 9:322-329. [18]ZHAO Y C, WANG F, GAO L C, et al. Ubiquitin-specific protease 4 is an endogenous negative regulator of metabolic dysfunctions in nonalcoholic fatty liver disease in mice[J]. Hepatology, 2018, 68(3):897-917. [19]ZHANG Y, WAN J Y, XU Z, et al. Exercise ameliorates insulin resistance via regulating TGFβ-activated kinase 1 (TAK1)-mediated insulin signaling in liver of high-fat diet-induced obese rats[J]. J Cell Physiol, 2019, 234(5):7467-7474. [20]AN S M, ZHAO L P, SHEN L J, et al. USP18 protects against hepatic steatosis and insulin resistance through its deubiquitinating activity[J]. Hepatology, 2017, 66(6):1866-1884. [21]JI Y X, HUANG Z, YANG X, et al. The deubiquitinating enzyme cylindromatosis mitigates nonalcoholic steatohepatitis[J]. Nat Med, 2018, 24(2):213-223. [22]LIU B, JIANG S W, LI M, et al. Proteome-wide analysis of USP14 substrates revealed its role in hepatosteatosis via stabilization of FASN[J]. Nat Commun, 2018, 9(1):4770. [23]KITAMURA H, ISHINO T, SHIMAMOTO Y, et al. Ubiquitin-specific protease 2 modulates the lipopolysaccharide-elicited expression of proinflammatory cytokines in macrophage-like HL-60 cells[J]. Mediators Inflamm, 2017, 2017:6909415. [24]JEAN-CHARLES P Y, ZHANG L, WU J H, et al. Ubiquitin-specific protease 20 regulates the reciprocal functions of β-Arrestin2 in toll-like receptor 4-promoted nuclear factor κb (NFκb) activation[J]. J Biol Chem, 2016, 291(14):7450-7464. [25]JEAN-CHARLES P Y, WU J H, ZHANG L, et al. USP20 (Ubiquitin-Specific Protease 20) inhibits TNF (Tumor Necrosis Factor)-triggered smooth muscle cell inflammation and attenuates atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2018, 38(10):2295-2305. [26]TAKAMI Y, NAKAGAMI H, MORISHITA R, et al. Potential role of CYLD (Cylindromatosis) as a deubiquitinating enzyme in vascular cells[J]. Am J Pathol, 2008, 172(3):818-829. [27]LIU S, LV J, HAN L, et al. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells[J]. Biochem Biophys Res Commun, 2012, 420(1):78-83. [28]YU B, LIU Z Y, FU Y, et al. CYLD deubiquitinates nicotinamide adenine dinucleotide phosphate oxidase 4 contributing to adventitial remodeling[J].Arterioscler Thromb Vasc Biol, 2017, 37(9):1698-1709. [29]IMAIZUMI Y, TAKAMI Y, YAMAMOTO K, et al. Pathophysiological significance of cylindromatosis in the vascular endothelium and macrophages for the initiation of age-related atherogenesis[J]. Biochem Biophys Res Commun, 2019, 508(4):1168-1174. [30]YU S M, JEAN-CHARLES P, ABRAHAM D M, et al. The deubiquitinase ubiquitin-specific protease 20 is a positive modulator of myocardial β1-adrenergic receptor expression and signaling[J]. J Biol Chem, 2019, 294(7):2500-2518. [31] ZHANG W, ZHANG Y, ZHANG H, et al. USP49 inhibits ischemia-reperfusion-induced cell viability suppression and apoptosis in human AC16 cardiomyocytes through DUSP1-JNK1/2 signaling[J]. J Cell Physiol, 2019, 234(5):6529-6538. [32]YAN K, WANG K, LI P. The role of post‐translational modifications in cardiac hypertrophy[J]. J Cell Mol Med, 2019, 23(6):3795-3807. [33]HE B, ZHAO Y C, GAO L C, et al. Ubiquitin-specific protease 4 is an endogenous negative regulator of pathological cardiac hypertrophy[J]. Hypertension, 2016, 67(6):1237-1248. [34]LIU N N, CHAI R J, LIU B, et al. Ubiquitin-specific protease 14 regulates cardiac hypertrophy progression by increasing GSK-3β phosphorylation[J]. Biochem Biophys Res Commun, 2016, 478(3):1236-1241. [35]ISUMI Y, HIRATA T, SAITOH H, et al. Transgenic overexpression of USP15 in the heart induces cardiac remodeling in mice[J]. Biochem Biophys Res Commun, 2011, 405(2):216-221. [36]YING X Y, ZHAO Y C, YAO T B, et al. Novel protective role for ubiquitin-specific protease 18 in pathological cardiac remodeling[J]. Hypertension, 2016, 68(5):1160-1170. [37]WANG H, LAI Y, MATHIS B J, et al. Deubiquitinating enzyme CYLD mediates pressure overload-induced cardiac maladaptive remodeling and dysfunction via downregulating Nrf2[J]. J Mol Cell Cardiol, 2015, 84:143-153. |
[1] | 李晓燕, 郁志明. 老年心房颤动合并焦虑状态的研究进展[J]. 实用老年医学, 2024, 38(10): 979-982. |
[2] | 顾崇怀, 项学军, 郑元喜, 乔锐, 林松. 达格列净对接受冠状动脉介入治疗的伴有射血分数降低的心力衰竭合并2型糖尿病老年病人疗效观察[J]. 实用老年医学, 2024, 38(10): 1025-1029. |
[3] | 刘瑾, 黄艳秋, 朱毅, 卓莉莉. 沙库巴曲缬沙坦钠对老年慢性心力衰竭病人的影响[J]. 实用老年医学, 2024, 38(10): 1030-1033. |
[4] | 徐寿勇, 袁勇. 老年病人开展双低剂量CT冠状动脉造影的可行性研究[J]. 实用老年医学, 2024, 38(10): 1054-1058. |
[5] | 刘琳, 邬青, 张静, 毛芳莹, 余璐, 任艺婷, 方婷. 老年心力衰竭病人症状感知现状及影响因素分析[J]. 实用老年医学, 2024, 38(5): 461-437. |
[6] | 王超, 陈晓君. 热带气候对东北地区老年原发性高血压病人血压、外周血microRNA-146a及Hcy的影响[J]. 实用老年医学, 2024, 38(5): 470-437. |
[7] | 刘倩慧, 姚子俊, 何玉立, 徐云凡, 吴军. 老年2型糖尿病合并慢性心力衰竭病人HbA1c水平对心脏结构和功能的影响[J]. 实用老年医学, 2024, 38(5): 491-437. |
[8] | 张丽莉, 李静, 丁林锋, 孙静娴, 蔡静波. 颈动脉粥样硬化斑块对非瓣膜性心房颤动病人缺血性脑卒中事件的预测价值[J]. 实用老年医学, 2024, 38(3): 236-239. |
[9] | 查志敏, 刘欢, 王向明, 李秋爽, 郭妍. 心脏瓣膜钙化对老年冠心病病人预后的影响[J]. 实用老年医学, 2024, 38(3): 245-250. |
[10] | 陈映泉, 钟勇. 心血管老化的机制、标志物和治疗[J]. 实用老年医学, 2024, 38(3): 299-303. |
[11] | 朱晨晨, 秦海东. 斑块侵蚀在急慢性冠脉综合征发生发展中的作用[J]. 实用老年医学, 2024, 38(3): 308-311. |
[12] | 程清, 徐艳, 陈国飞, 邓心悦. 血清血管紧张素Ⅱ和一氧化氮水平与老年慢性心力衰竭病人认知功能障碍的相关性[J]. 实用老年医学, 2024, 38(2): 132-135. |
[13] | 章颖, 谢玲, 叶佳琦, 羌文慧, 严晓云, 姜英, 张清. 层粘连蛋白与老年急性心肌梗死病人主要不良心血管事件的相关性[J]. 实用老年医学, 2024, 38(2): 149-151. |
[14] | 段力丹, 习玲, 许建萍. 射血分数正常的老年高血压病人TyG指数与左心室舒张功能的相关性分析[J]. 实用老年医学, 2024, 38(2): 152-156. |
[15] | 范婷泳, 袁丽, 杨小玲, 陈茜. Caprini量表评估老年糖尿病病人静脉血栓栓塞症的效果[J]. 实用老年医学, 2023, 37(12): 1233-1237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|