实用老年医学 ›› 2021, Vol. 35 ›› Issue (1): 84-86.doi: 10.3969/j.issn.1003-9198.2021.01.023
龚战, 胡孙源, 杨洪飞, 杨元宵
收稿日期:
2019-12-13
发布日期:
2021-01-12
通讯作者:
杨元宵,Email:yyx104475@163.com
基金资助:
Received:
2019-12-13
Published:
2021-01-12
中图分类号:
龚战, 胡孙源, 杨洪飞, 杨元宵. 肠道及口腔微生物对阿尔茨海默病影响的研究进展[J]. 实用老年医学, 2021, 35(1): 84-86.
[1] SCHNEIDER L. Alzheimer's disease and other dementias: update on research[J]. Lancet Neurol, 2017, 16(1):4-5. [2] FIGUEIREDO N, DINKAR A, KHORATE M. Probiotics in human health[J]. INT J Orofaclal Myolgy, 2018, 2(1):1-5. [3] 王融, 邵祎妍, 林佳佳, 等. 肠道菌群与益生菌在衰老及其调控中的研究与应用[J]. 生命科学, 2019, 31(1):1-7. [4] PARK H M, OMURA S, FUJITA M, et al. Helicobacter pylori and gut microbiota in multiple sclerosis versus Alzheimer's disease: 10 pitfalls of microbiome studies[J]. Clin Exp Neuroimmunol, 2017, 8(3):215-232. [5] OHSAWA K, UCHIDA N, OHKI K, et al. Lactobacillus helveticus-fermented milk improves learning and memory in mice[J]. Nutr Neurosci, 2015, 18(5):232-240. [6] YUNES R A, POLUEKTOVA E U, DYACHKOVA M S, et al. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota[J]. Anaerobe, 2016, 42:197-204. [7] CHESTERS R, MULLER J, GARASCHUK O, et al. A bell-shaped dependence between amyloidosis and GABA accumulation in astrocytes in a mouse model of Alzheimer's disease[J]. Neurobiol Aging, 2018, 61:187-197. [8] WALL R, CRYAN J F, ROSS R P, et al. Bacterial neuroactive compounds produced by psychobiotics[J]. Adv Exp Med Biol, 2014, 817:221-240. [9] HILL J M, LUKIW W J. Microbial-generated amyloids and Alzheimer's disease (AD)[J]. Front Aging Neurosci, 2015. DOI: 10.3389/fnagi.2015.00009. [10] KELLY J R, KENNEDY P J, CRYAN J F, et al. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders[J]. Front Cell Neurosci, 2015, 9:392. [11] BLANCHETTE M, DANEMAN R. Formation and maintenance of the BBB[J]. Mech Develop, 2015, 138(1):8-16. [12] UNDERLY R, SONG M S, DUNBER G L, et al. Expression of Alzheimer-type neurofibrillary epitopes in primary rat cortical neurons following infection with enterococcus faecalis[J]. Front Aging Neurosci, 2016, 7:259. [13] 杨明, 麻雅婷, 何赏, 等. 不同细菌所致小鼠血流感染模型中MIP-1β、MIP-2和IL-12p70的表达及变化规律[J]. 中国感染控制杂志, 2017, 16(11):993-998. [14] CHARLTON T, SHAH V, LYNCH T, et al. Amyloid aggregation of bacillus circulans xylanase under native conditions and its modulation by β-amyloid-derived peptide fragments[J]. Chembiochem, 2018,19(24):2566-2574. [15] YANG H J, KWON D Y, KIM H J, et al. Fermenting soybeans with bacillus licheniformis potentiates their capacity to improve cognitive function and glucose homeostaisis in diabetic rats with experimental Alzheimer's type dementia[J]. Eur J Nutr, 2015, 54(1):77-88. [16] LIU X, CAO S, ZHANG X. Modulation of gut microbiota-brain axis by probiotics, prebiotics, and diet[J]. J Agr Food Chem, 2015, 63(36):7885-7895. [17] 简晓红, 黎绫, 罗学港, 等. 去甲肾上腺素在阿尔茨海默病中的作用[J]. 神经解剖学杂志, 2012, 28(4):427-430. [18] FEINSTEIN D L, KALININ S, POLAK P E, et al. Noradrenaline deficiency in brain increases beta-amyloid plaque burden in an animal model of Alzheimer's disease[J]. Aging Clin Exp Res, 2007, 28(8):1206-1214. [19] 孙宝娟, 何玲. 多巴胺受体与阿尔茨海默症相关性研究进展[J]. 临床合理用药杂志, 2015, 29(10B):177-180. [20] FRANCESCA P, SANDRA S C, INAKI E, et al. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease[J]. Nutr Rev, 2016, 74(10):624-634. [21] BANACK S A, CALLER T A, STOMMEL E W. The cyanobacteria derived toxin beta-N-methylamino-L-alanine and amyotrophic lateral sclerosis[J]. Toxins, 2010, 2(12):2837-2850. [22] PAPAPETROPOULOS S. Is there a role for naturally occurring cyanobacterial toxins in neurodegeneration? The beta-N-methylamino-L-alanine(BMAA) paradigm[J]. Neurochem Int, 2007, 50(7/8):998-1003. [23] POPOVA A A, KOKSHAROVA O A. Neurotoxic non-proteinogenic amino acid β-N-methylamino-L-alanine and its role in biological systems[J]. Biochemistry: Moscow, 2016, 81(8):794-805. [24] PABLO J, BANACK S A, COX P A, et al. Cyanobacterial neurotoxin BMAA in ALS and Alzheimer's disease[J]. Acta Neurol Scand, 2009, 120(5):216-225. [25] KOUNTOURAS J, GAVALAS E, Zavos C, et al. Alzheimers disease and Helicobacter pylori infection: defective immune regulation and apoptosis as proposed common links[J]. Med Hypotheses, 2007, 68(2):378-388. [26] 刘军莉, 崔森. 肠道微生物群与阿尔茨海默病[J]. 中国高原医学与生物学杂志, 2018, 39(3):203-206. [27] CATTANEO A, CATTANE N, GALLUZZI S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly[J]. Neurobiol Aging, 2017, 49:60-68. [28] GOW N A R, YADAV B. Microbe profile:Candida albicans:a shape-changing,opportunistic pathogenic fungus of humans[J]. Microbiology, 2017, 163(8):1145-1147. [29] WU Y, DU S, JOHNSON J L, et al. Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits[J]. Nat Commun, 2019, 10(1):58. [30] WAN C, JIN F, DU Y, et al. Genistein improves schistosomiasis liver granuloma and fibrosis via dampening NF-κB signaling in mice[J]. Parasitol Res, 2017, 116(4):1165-1174. [31] IDE M, HARRIS M, STEVENS A, et al. Periodontitis and cognitive decline in Alzheimer's disease[J]. PLoS One, 2016, 11(3):e0151081. [32] DOMINY S S, LYNCH C, ERMINI F, et al. Porphyromonas gingivalis in Alzheimer's disease brains: evidence for disease causation and treatment with small-molecule inhibitors[J]. Sci Adv, 2019. DOI: 10.1126/sciadv.aau3333. [33] ILIEVSKI V, ZUCHOWSKA P K, GREEN S J, et al. Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration and amyloid beta production in wild type mice[J]. PLoS One, 2018, 13(10):e0204941. |
[1] | 孙丽, 尹卫红, 经俊, 钱夏丽. 亚麻醉剂量艾司氯胺酮对老年脊柱手术病人术后早期认知功能障碍的影响[J]. 实用老年医学, 2024, 38(10): 1039-1043. |
[2] | 董丽华, 李加梅, 郑加平, 雷小晶. 血液生物标志物在阿尔茨海默病早期诊断中的研究进展[J]. 实用老年医学, 2023, 37(12): 1249-1254. |
[3] | 张伟, 王蓉. 衰老作为神经退行性疾病危险因素的科学现状分析[J]. 实用老年医学, 2023, 37(10): 984-988. |
[4] | 时建铨, 郑慧芬, 徐畅, 王变荣. 认知障碍简明评价量表与Addenbrooke认知评估量表Ⅲ诊断阿尔茨海默病的准确性比较[J]. 实用老年医学, 2023, 37(10): 1041-1043. |
[5] | 阎子花, 杜静, 宋竹梅, 张兴梅, 张楠. 痴呆病人病感失认测评工具的研究进展[J]. 实用老年医学, 2023, 37(10): 1059-1063. |
[6] | 王琳琳, 杨诗怡, 徐俊. 人工智能在阿尔茨海默病中的研究进展[J]. 实用老年医学, 2023, 37(9): 869-872. |
[7] | 王敏, 郭文军, 汤忠泉, 赵晓敏, 欧婷, 李云涛. 听力障碍与阿尔茨海默病相关性的Meta分析[J]. 实用老年医学, 2023, 37(9): 915-919. |
[8] | 段景宜, 刘静, 查玉航, 杨巧露, 何海洋, 马亚男, 高海英. 阿尔茨海默病医防融合模式的探索[J]. 实用老年医学, 2023, 37(8): 757-760. |
[9] | 张绍敏, 吴锦晖. COVID-19与阿尔茨海默病的最新研究进展[J]. 实用老年医学, 2023, 37(5): 521-523. |
[10] | 赵璨, 冯美江. 外泌体与阿尔茨海默病的研究进展[J]. 实用老年医学, 2023, 37(4): 335-338. |
[11] | 朱贺, 殷实. 认知障碍与抑郁症关系的研究进展[J]. 实用老年医学, 2023, 37(3): 234-237. |
[12] | 郭晓娟, 刘洁, 王瑾, 陆文惠, 高玲, 屈秋民. 西安地区阿尔茨海默病病人药物依从性调查及影响因素分析[J]. 实用老年医学, 2023, 37(1): 47-50. |
[13] | 张楠, 左文行, 吴锦晖. 缓和医疗干预对老年痴呆病人的影响:一项系统评价及Meta分析[J]. 实用老年医学, 2022, 36(6): 606-611. |
[14] | 刘善雯, 刘春风, 胡华. 特异性睡眠脑电频率在阿尔茨海默病中的研究进展[J]. 实用老年医学, 2022, 36(5): 523-527. |
[15] | 李碧汐, 张亚欣, 刘盼, 宋雨, 李耘, 马丽娜. 老年人肌肉功能与认知功能的相关性研究[J]. 实用老年医学, 2022, 36(4): 386-389. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|