Practical Geriatrics ›› 2024, Vol. 38 ›› Issue (11): 1161-1166.doi: 10.3969/j.issn.1003-9198.2024.11.017
Previous Articles Next Articles
Received:
2023-12-29
Online:
2024-11-20
Published:
2024-11-21
CLC Number:
[1] SUN H, SAEEDI P, KARURANGA S, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183:109119. [2] 韩秀丹, 朱凌燕, 徐积兄. 二甲双胍对糖尿病视网膜病变的作用及机制[J]. 国际内分泌代谢杂志, 2019, 39(1):53-56. [3] SHAIK A R, SINGH P, SHAIK C, et al. Metformin: is it the well wisher of bone beyond glycemic control in diabetes mellitus?[J]. Calcif Tissue Int, 2021, 108(6):693-707. [4] KAHN S E, ZINMAN B, LACHIN J M, et al. Rosiglitazone-associated fractures in type 2 diabetes: an analysis from A Diabetes Outcome Progression Trial (ADOPT)[J]. Diabetes Care, 2008, 31(5):845-851. [5] OH T K, SONG I A. Metformin therapy and hip fracture risk among patients with type II diabetes mellitus: a population-based cohort study[J]. Bone, 2020, 135:115325. [6] TSENG C H. Metformin use is associated with a lower risk of osteoporosis/vertebral fracture in Taiwanese patients with type 2 diabetes mellitus[J]. Eur J Endocrinol, 2021, 184(2):299-310. [7] CHARLIER S, VAVANIKUNNEL J, BECKER C, et al. Antidiabetic treatment, level of glycemic control, and risk of fracture in type 2 diabetes: a nested, case-control study[J]. J Clin Endocrinol Metab, 2021, 106(2):554-566. [8] 张丽娜, 郭立新. 磺脲类降糖药物的临床认识[J]. 中国实用内科杂志, 2014, 34(10):969-973. [9] STARUP-LINDE J, GREGERSEN S, FROST M, et al. Use of glucose-lowering drugs and risk of fracture in patients with type 2 diabetes[J]. Bone, 2017, 95:136-142. [10] RAJPATHAK S N, FU C, BRODOVICZ K G, et al. Sulfonylurea use and risk of hip fractures among elderly men and women with type 2 diabetes[J]. Drugs Aging, 2015, 32(4):321-327. [11] MA P, GU B, XIONG W, et al. Glimepiride promotes osteogenic differentiation in rat osteoblasts via the PI3K/Akt/eNOS pathway in a high glucose microenvironment[J]. PLoS One, 2014, 9(11):e112243. [12] FRONCZEK-SOKÓŁ J, PYTLIK M. Effect of glimepiride on the skeletal system of ovariectomized and non-ovariectomized rats[J]. Pharmacol Rep, 2014, 66(3):412-417. [13] KOHLER S, KASPERS S, SALSALI A, et al. Analysis of fractures in patients with type 2 diabetes treated with empagliflozin in pooled data from placebo-controlled trials and a head-to-head study versus glimepiride[J]. Diabetes Care, 2018, 41(8):1809-1816. [14] BALFOUR J A, MCTAVISH D. Acarbose. An update of its pharmacology and therapeutic use in diabetes mellitus[J]. Drugs, 1993, 46(6):1025-1054. [15] HOLMAN R R, CULL C A, TURNER R C. A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (U.K. Prospective Diabetes Study 44)[J]. Diabetes Care, 1999, 22(6):960-964. [16] HE K, SHI J C, MAO X M. Safety and efficacy of acarbose in the treatment of diabetes in Chinese patients[J]. Ther Clin Risk Manag, 2014, 10:505-511. [17] CHAI S, LIU F, YANG Z, et al. Risk of fracture with dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis combining 177 randomized controlled trials with a median follow-up of 26 weeks[J]. Front Pharmacol, 2022, 13:825417. [18] CHOI H J, PARK C, LEE Y K, et al. Risk of fractures and diabetes medications: a nationwide cohort study[J]. Osteoporos Int, 2016, 27(9):2709-2715. [19] LI Y, JIN D, XIE W, et al. PPAR-γ and Wnt regulate the differentiation of MSCs into adipocytes and osteoblasts respectively[J]. Curr Stem Cell Res Ther, 2018, 13(3):185-192. [20] COLHOUN H M, LIVINGSTONE S J, LOOKER H C, et al. Hospitalised hip fracture risk with rosiglitazone and pioglitazone use compared with other glucose-lowering drugs[J]. Diabetologia, 2012, 55(11):2929-2937. [21] SCHWARTZ A V, CHEN H, AMBROSIUS W T, et al. Effects of TZD use and discontinuation on fracture rates in ACCORD Bone Study[J]. J Clin Endocrinol Metab, 2015, 100(11):4059-4066. [22] PAVLOVA V, FILIPOVA E, UZUNOVA K, et al. Pioglitazone therapy and fractures: systematic review and meta-analysis[J]. Endocr Metab Immune Disord Drug Targets, 2018, 18(5):502-507. [23] 张雅静. 钠-葡萄糖协同转运蛋白2抑制剂在2型糖尿病治疗中的研究进展[J]. 实用临床医学, 2021, 22(6):97-101. [24] TAYLOR S I, BLAU J E, ROTHER K I. Possible adverse effects of SGLT2 inhibitors on bone[J]. Lancet Diabetes Endocrinol, 2015, 3(1):8-10. [25] BLAU J E, BAUMAN V, CONWAY E M, et al. Canagliflozin triggers the FGF23/1, 25-dihydroxyvitamin D/PTH axis in healthy volunteers in a randomized crossover study[J]. JCI Insight, 2018, 3(8):e99123. [26] AL-MASHHADI Z K, VIGGERS R, STARUP-LINDE J, et al. SGLT2 inhibitor treatment is not associated with an increased risk of osteoporotic fractures when compared to GLP-1 receptor agonists: a nationwide cohort study[J]. Front Endocrinol: Lausanne, 2022, 13:861422. [27] ZHAO B, SHEN J, ZHAO J, et al. Do sodium-glucose cotransporter 2 inhibitors lead to fracture risk? A pharmacovigilance real-world study[J]. J Diabetes Investig, 2021, 12(8):1400-1407. [28] NEAL B, PERKOVIC V, MAHAFFEY K W, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med, 2017, 377(7):644-657. [29] PERKOVIC V, JARDINE M J, NEAL B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy[J]. N Engl J Med, 2019, 380(24):2295-2306. [30] BILEZIKIAN J P, WATTS N B, USISKIN K, et al. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin[J]. J Clin Endocrinol Metab, 2016, 101(1):44-51. [31] CARR R D, SOLOMON A. Inhibitors of dipeptidyl peptidase-4 as therapeutic agents for individuals with type 2 diabetes: a 25-year journey[J]. Diabet Med, 2020, 37(8):1230-1233. [32] 王玉莹, 刘蕴玲. 二肽基肽酶4抑制剂对骨代谢影响的研究进展[J]. 中国糖尿病杂志, 2022, 30(2):144-146. [33] GAMBLE J M, DONNAN J R, CHIBRIKOV E, et al. The risk of fragility fractures in new users of dipeptidyl peptidase-4 inhibitors compared to sulfonylureas and other anti-diabetic drugs: a cohort study[J]. Diabetes Res Clin Pract, 2018, 136:159-167. [34] HOU W H, CHANG K C, LI C Y, et al. Dipeptidyl peptidase-4 inhibitor use is associated with decreased risk of fracture in patients with type 2 diabetes: a population-based cohort study[J]. Br J Clin Pharmacol, 2018, 84(9):2029-2039. [35] USTULIN M, PARK S Y, CHOI H, et al. Effect of dipeptidyl peptidase-4 inhibitors on the risk of bone fractures in a Korean population[J]. J Korean Med Sci, 2019, 34(35):e224. [36] FERNANDO K, BAIN S C, HOLMES P, et al. Glucagon-like peptide 1 receptor agonist usage in type 2 diabetes in primary care for the UK and beyond: a narrative review[J]. Diabetes Ther, 2021, 12(9):2267-2288. [37] WU X, LI S, XUE P, et al. Liraglutide, a glucagon-like peptide-1 receptor agonist, facilitates osteogenic proliferation and differentiation in MC3T3-E1 cells through phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), extracellular signal-related kinase (ERK)1/2, and cAMP/protein kinase A (PKA) signaling pathways involving β-catenin[J]. Exp Cell Res, 2017, 360(2):281-291. [38] LI Z, LI S, WANG N, et al. Liraglutide, a glucagon-like peptide-1 receptor agonist, suppresses osteoclastogenesis through the inhibition of NF-κB and MAPK pathways via GLP-1R[J]. Biomed Pharmacother, 2020, 130:110523. [39] DRIESSEN J H, HENRY R M, VAN ONZENOORT H A, et al. Bone fracture risk is not associated with the use of glucagon-like peptide-1 receptor agonists: a population-based cohort analysis[J]. Calcif Tissue Int, 2015, 97(2):104-112. [40] DRIESSEN J H, VAN ONZENOORT H A, STARUP-LINDE J, et al. Use of glucagon-like-peptide 1 receptor agonists and risk of fracture as compared to use of other anti-hyperglycemic drugs[J]. Calcif Tissue Int, 2015, 97(5):506-515. [41] ZHANG Y S, WENG W Y, XIE B C, et al. Glucagon-like peptide-1 receptor agonists and fracture risk: a network meta-analysis of randomized clinical trials[J]. Osteoporos Int, 2018, 29(12):2639-2644. [42] GILBERT M P, MARRE M, HOLST J J, et al. Comparison of the long-term effects of liraglutide and glimepiride monotherapy on bone mineral density in patients with type 2 diabetes[J]. Endocr Pract, 2016, 22(4):406-411. [43] CHENG L, HU Y, LI Y Y, et al. Glucagon-like peptide-1 receptor agonists and risk of bone fracture in patients with type 2 diabetes: a meta-analysis of randomized controlled trials[J]. Diabetes Metab Res Rev, 2019, 35(7):e3168. [44] FERRON M, WEI J, YOSHIZAWA T, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism[J]. Cell, 2010, 142(2):296-308. [45] OGATA N, CHIKAZU D, KUBOTA N, et al. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover[J]. J Clin Invest, 2000, 105(7):935-943. [46] AKUNE T, OGATA N, HOSHI K, et al. Insulin receptor substrate-2 maintains predominance of anabolic function over catabolic function of osteoblasts[J]. J Cell Biol, 2002, 159(1):147-156. [47] LOSADA-GRANDE E, HAWLEY S, SOLDEVILA B, et al. Insulin use and excess fracture risk in patients with type 2 diabetes: a propensity-matched cohort analysis[J]. Sci Rep, 2017, 7(1):3781. [48] WALLANDER M, AXELSSON K F, NILSSON A G, et al. Type 2 diabetes and risk of hip fractures and non-skeletal fall injuries in the elderly: a study from the fractures and fall injuries in the elderly cohort (FRAILCO)[J]. J Bone Miner Res, 2017, 32(3):449-460. [49] CORRAO G, MONZIO COMPAGNONI M, RONCO R, et al. Is switching from oral antidiabetic therapy to insulin associated with an increased fracture risk?[J]. Clin Orthop Relat Res, 2020, 478(5):992-1003. [50] MATTISHENT K, LOKE Y K. Meta-analysis: association between hypoglycaemia and serious adverse events in older patients[J]. J Diabetes Complications, 2016, 30(5):811-818. |
[1] | YANG Liping, KANG Yufeng, PENG Zhenzhen. Effects of resistance exercise on blood glucose control and activity in elderly patients with type 2 diabetes mellitus with sarcopenia [J]. Practical Geriatrics, 2024, 38(11): 1097-1100. |
[2] | YI Mengting, ZHOU Yi, ZONG Qianxing, WANG Xuefei, YUAN Yingying, CHEN Jing, WU Haidi, MO Yongzhen. Establishment of a hypoglycemia risk prediction model based on decision tree for elderly patients with type 2 diabetes combined with cognitive impairment [J]. Practical Geriatrics, 2024, 38(11): 1136-1141. |
[3] | LIU Ge, LIU Yang, LUO Jie. Consistency between Daytona ultra-wide-field scanning laser ophthalmoscope and FFA in screening diabetic retinopathy in elderly patients with cataract [J]. Practical Geriatrics, 2024, 38(11): 1148-1152. |
[4] | WANG Su, ZHAO Yijing, WEI Chenmin, CHEN Kun, CAO Wen, WANG Kun, YANG Yu. Correlation of triglyceride-glucose index with low-density lipoprotein subtypes in elderly patients with type 2 diabetes mellitus [J]. Practical Geriatrics, 2024, 38(10): 1002-1006. |
[5] | GU Chonghuai, XIANG Xuejun, ZHENG Yuanxi, QIAO Rui, LIN Song. Efficacy of dapagliflozin in elderly patients undergoing coronary intervention with type 2 diabetes mellitus and ejection fraction reduced heart failure [J]. Practical Geriatrics, 2024, 38(10): 1025-1029. |
[6] | . [J]. Practical Geriatrics, 2024, 38(10): 1066-1069. |
[7] | LIU Qianhui, YAO Zijun, HE Yuli, XU Yunfan, WU Jun. Effects of HbA1c level on cardiac structure and function in elderly patients with type 2 diabetes mellitus and chronic heart failure [J]. Practical Geriatrics, 2024, 38(5): 491-437. |
[8] | LIU Tongjun, ZHAO Yajie, HU Jieling, HU Yang, LIANG Wei. Effect of glucose metabolic disorders on serum levels of activin-A [J]. Practical Geriatrics, 2024, 38(5): 495-437. |
[9] | . [J]. Practical Geriatrics, 2024, 38(5): 521-437. |
[10] | . [J]. Practical Geriatrics, 2024, 38(5): 529-437. |
[11] | TANG Yuan, DENG Shufang, HE Yongmei, DAI Yuxuan, LUO Jing. The status of health literacy and correlation with frailty in elderly patients with type 2 diabetes mellitus [J]. Practical Geriatrics, 2024, 38(3): 255-259. |
[12] | DAI Ling-li, YU Yun. Association of estimated glomerular filtration rate with insulin resistance and β-cell function in elderly patients with type 2 diabetes mellitus [J]. Practical Geriatrics, 2023, 37(12): 1219-1223. |
[13] | FAN Ting-yong, YUAN Li, YANG Xiao-ling, CHEN Qian. Assessment effect of Caprini scale on venous thromboembolism in elderly patients with diabetes [J]. Practical Geriatrics, 2023, 37(12): 1233-1237. |
[14] | ZHANG He-cheng, WEI Su. Correlation of serum ferritin level with diabetic foot in elderly patients with type 2 diabetes mellitus [J]. Practical Geriatrics, 2023, 37(11): 1111-1114. |
[15] | HU Yan, WU Hai-di, WANG Xue-fei, LOU Qing-lin, YE Qing, GU Liu-bao, DAI Jing, SONG Xiao-bo. Correlation between diabetic foot risk score and urinary microalbumin/creatinine ratio in elderly patients with type 2 diabetes [J]. Practical Geriatrics, 2023, 37(11): 1134-1137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|